环形涂色裸题

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<cstring>
#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<bitset>
#include<utility>
#include<functional>
#include<iomanip>
#include<sstream>
#include<ctime>
#include<cassert>
#define A first
#define B second
#define mp make_pair
#define pb push_back
#define pw(x) (1ll << (x))
#define sz(x) ((int)(x).size())
#define all(x) (x).begin(),(x).end()
#define rep(i,l,r) for(int i=(l);i<(r);i++)
#define per(i,r,l) for(int i=(r);i>=(l);i--)
#define FOR(i,l,r) for(int i=(l);i<=(r);i++)
#define eps 1e-9
#define PIE acos(-1)
#define cl(a,b) memset(a,b,sizeof(a))
#define fastio ios::sync_with_stdio(false);cin.tie(0);
#define lson l , mid , ls
#define rson mid + 1 , r , rs
#define ls (rt<<1)
#define rs (ls|1)
#define INF 0x3f3f3f3f
#define lowbit(x) (x&(-x))
#define sqr(a) a*a
#define ll long long
#define ull unsigned long long
#define vi vector<int>
#define pii pair<int, int>
#define dd(x) cout << #x << " = " << (x) << ", "
#define de(x) cout << #x << " = " << (x) << "\n"
#define endl "\n"
using namespace std;
const int mod=1e9+;
int n,m,k,c;
const int maxn=+;
int vis[maxn],lab[maxn];
//**********************************
ll qpow(ll a,ll b)
{
ll ans=;
while(b){
if(b&)ans=ans*a%mod;
a=a*a%mod;
b>>=;
}
return ans;
}
ll getloop()
{
cl(vis,);
int cnt=;
FOR(i,,n){
if(vis[i])continue;
cnt++;
int j=i;
do{
vis[j]=;
j=lab[j];
}while(!vis[j]);
}
return cnt;
}
void work()
{
if(!n){
puts("0\n");return ;
}
ll ans=;
rep(i,,n){
FOR(j,,n)lab[j]=(j+i)%n+;
ans+=qpow(k,getloop());
// FOR(j,1,n/2)swap(lab[j],lab[n+1-j]);ans+=qpow(k,getloop());
ans%=mod;
// de(ans);
}
ans=ans*qpow(n,mod-)%mod;
// ans/=n;
// ans=ans*c%mod;
cout<<ans<<endl;
}
//********************************** //**********************************
int main()
{
// while(~scanf("%d",&n))work();
cin>>m>>n>>c;
k=qpow(c,m*m);
// de(k);
work();
return ;
}

polya定理,环形涂色的更多相关文章

  1. Polya定理

    http://www.cnblogs.com/wenruo/p/5304698.html 先看 Polya定理,Burnside引理回忆一下基础知识.总结的很棒. 一个置换就是集合到自身的一个双射,置 ...

  2. Burnside引理和Polya定理之间的联系

    最近,研究了两天的Burnside引理和Polya定理之间的联系,百思不得其解,然后直到遇到下面的问题: 对颜色限制的染色 例:对正五边形的三个顶点着红色,对其余的两个顶点着蓝色,问有多少种非等价的着 ...

  3. [洛谷P4980]【模板】Polya定理

    题目大意:给一个$n$个点的环染色,有$n$中颜色,问有多少种涂色方案是的旋转后本质不同 题解:$burnside$引理:$ans=\dfrac1{|G|}\sum\limits_{g\in G}A_ ...

  4. 【数论】【Polya定理】poj1286 Necklace of Beads

    Polya定理:设G={π1,π2,π3........πn}是X={a1,a2,a3.......an}上一个置换群,用m中颜色对X中的元素进行涂色,那么不同的涂色方案数为:1/|G|*(mC(π1 ...

  5. Necklace of Beads(polya定理)

    http://poj.org/problem?id=1286 题意:求用3种颜色给n个珠子涂色的方案数.polya定理模板题. #include <stdio.h> #include &l ...

  6. poj 2409 Let it Bead && poj 1286 Necklace of Beads(Polya定理)

    题目:http://poj.org/problem?id=2409 题意:用k种不同的颜色给长度为n的项链染色 网上大神的题解: 1.旋转置换:一个有n个旋转置换,依次为旋转0,1,2,```n-1. ...

  7. Burnside引理与Polya定理

    感觉这两个东西好鬼畜= = ,考场上出了肯定不会qwq.不过还是学一下吧用来装逼也是极好的 群的定义 与下文知识无关.. 给出一个集合$G = \{a, b, c, \dots \}$和集合上的二元运 ...

  8. POJ2154 Color(Polya定理)

    Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 11654   Accepted: 3756 Description Bead ...

  9. POJ 2409 Let it Bead:置换群 Polya定理

    题目链接:http://poj.org/problem?id=2409 题意: 有一串n个珠子穿起来的项链,你有k种颜色来给每一个珠子染色. 问你染色后有多少种不同的项链. 注:“不同”的概念是指无论 ...

随机推荐

  1. ES6入门:数据劫持、Proxy、Reflect

    什么是数据劫持 Object数据劫持实现原理 Array数据劫持的实现原理 Proxy.Reflect 一.什么是数据劫持 定义:访问或者修改对象的某个属性时,在访问和修改属性值时,除了执行基本的数据 ...

  2. ActiveMQ入门系列二:入门代码实例(点对点模式)

    在上一篇<ActiveMQ入门系列一:认识并安装ActiveMQ(Windows下)>中,大致介绍了ActiveMQ和一些概念,并下载.安装.启动他,还访问了他的控制台页面. 这篇,就用代 ...

  3. 学习前端第二天之css层叠样式

    一.设置样式公式 选择器 {属性:值:} 二.font 设置四大操作 font-size:字体大小 (以像素为单位) font-weight:字体粗细 font-family:字体    ( 可直接跟 ...

  4. 使用 function 构造函数创建组件和使用 class 关键字创建组件

    使用 function 构造函数创建组件: 如果想要把组件放到页面中,可以把构造函数的名称,当作 组件的名称,以 HTML标签形式引入页面中, 因为在React中,构造函数就是一个最基本的组件. 注意 ...

  5. DS1302时钟

    采用串行数据传送方式,SPI 3线接口 SPI总线 SPI接口是以主从方式工作的,通常有一个主器件和一个或多个从器件 MOSI – 主器件数据输出,从器件数据输入 MISO – 主器件数据输入,从器件 ...

  6. vue项目,子页面刷新404问题

    翻车事故分析: 因需对项目整体优化,调整过程,采用了路由的history模式,本地项目运行,刷新子页面都是OK的. 部署到测试服务器,正常跳转都ok,但刷新子页面就会出现404,请求变成了get,没有 ...

  7. 【坑】Mybatis原始获取配置方式,获取配置失败

    错误环境: mysql版本:6.0.6 mybatis 3.4.1 idea 2017.1.2 maven 3.5.0 错误描述: 配置经路径见图1,classpath是java文件夹 获取配置的代码 ...

  8. Docker镜像拉取失败或超时的解决办法:添加国内镜像

    $ docker pull php:7.1-fpm-alpine Error response from daemon: Get https://registry-1.docker.io/v2/: n ...

  9. 目标检测后处理之NMS(非极大值抑制算法)

    1.定义: 非极大值抑制算法NMS广泛应用于目标检测算法,其目的是为了消除多余的候选框,找到最佳的物体检测位置. 2.原理: 使用深度学习模型检测出的目标都有多个框,如下图,针对每一个被检测目标,为了 ...

  10. 在idea中相同的字符串使用equals()进行比较时,返回值是flase问题

    最近在idea中遇到了一个编码的问题,我的程序是从前台传过来一个字符串,判断用户的角色(学生,教师,管理员), 在进行equals()判断时,返回的确是false,然后就在网上查了查,发现是编码的问题 ...