bzoj 3837 pa2013 Filary
先搞第一问.考虑简单情况,如果\(m=2\),那么一定有个剩余类大小\(\ge \lceil\frac{n}{2}\rceil\),同时这也是答案下界
然后我们每次随机选出一个数\(a_i\),然后钦定它在我们要的剩余类里,现在再枚举其他数,看一下最多有多少个数\(a_j\)可以和他模\(m\)同余,也就是选最多的数满足\(\gcd(|a_i-a_{j_1}|,|a_i-a_{j_2}|,|a_i-a_{j_3}|...)>1\).那对于每个\(j\),把所有\(|a_i-a_j|\)的质因子位置全\(+1\)--因为\(m\)取质数显然比取合数优.最后\(cnt_p\)的最大值即为第一问答案
第二问的话,因为是\(\gcd(...)>1\),那我们对于每个质数位置维护\(|a_i-a_j|\)为它倍数的\(\gcd(|a_i-a_j|...)\),这样第二问答案就是第一问最大的位置上最大的这个\(\gcd\)
#include<bits/stdc++.h>
#define LL long long
#define uLL unsigned long long
#define db double
using namespace std;
const int N=1e5+10,M=N*100;
int rd()
{
int x=0,w=1;char ch=0;
while(ch<'0'||ch>'9'){if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
int n,a[N],prm[N*10],tt,pp[M],a1,a2,c1[M],c2[M];
int main()
{
for(int i=2;i<=10000000;++i)
{
if(!pp[i]) pp[i]=i,prm[++tt]=i;
for(int j=1;i*prm[j]<=10000000;++j)
{
pp[i*prm[j]]=prm[j];
if(i%prm[j]==0) break;
}
}
n=rd();
for(int i=1;i<=n;++i) a[i]=rd();
int Q=10;
while(Q--)
{
int ii=rand()%n+1,bs=0;
for(int i=1;i<=n;++i)
{
if(a[i]==a[ii]){++bs;continue;}
int x=abs(a[i]-a[ii]),xx=x,las=0;
while(x>1)
{
if(pp[x]!=las)
++c1[pp[x]],c2[pp[x]]=__gcd(xx,c2[pp[x]]);
las=pp[x],x/=pp[x];
}
}
for(int i=1;i<=n;++i)
{
if(a[ii]==a[i]) continue;
int x=abs(a[i]-a[ii]);
while(x>1)
{
if(c1[pp[x]]+bs>a1||(c1[pp[x]]+bs==a1&&c2[pp[x]]>a2))
a1=c1[pp[x]]+bs,a2=c2[pp[x]];
c1[pp[x]]=c2[pp[x]]=0;
x/=pp[x];
}
}
}
printf("%d %d\n",a1,a2);
return 0;
}
bzoj 3837 pa2013 Filary的更多相关文章
- bzoj 3837 (随机过题法了解一下)
3837: [Pa2013]Filary Time Limit: 60 Sec Memory Limit: 256 MBSubmit: 395 Solved: 74[Submit][Status] ...
- 【BZOJ3837】[Pa2013]Filary 随机化神题
[BZOJ3837][Pa2013]Filary Description 给定n个正整数,从中挑出k个数,满足:存在某一个m(m>=2),使得这k个数模m的余数相等. 求出k的最大值,并求出此时 ...
- 【BZOJ3837】[PA2013]Filary
[BZOJ3837][PA2013]Filary 题面 darkbzoj 题解 考虑到模数为\(2\)时答案至少为\(\frac n2\),这是我们答案的下界. 那么我们对于任意的一个数,它们答案集合 ...
- BZOJ 3736: [Pa2013]Karty
Description 一个0/1矩阵,求能覆盖所有 \(1\) ,同时不覆盖所有 \(0\) 的矩阵,使这个面积最大. Sol DP/悬线法. 首先,所求的矩阵一定可以覆盖所有贴边的悬线. 用悬线法 ...
- BZOJ3837 : [Pa2013]Filary
当m取2时,k至少为$\frac{n}{2}$ 所以在最优解中每个数被选中的概率至少为$\frac{1}{2}$ 每次随机选取一个位置i,计算出其它数与$a_i$的差值,将差值分解质因数 所有质因数中 ...
- [BZOJ]3737 [Pa2013]Euler
从这个FB开始写博客啦. 也不知道会坚持多久…… = =似乎要加一句转载请注明出处 http://www.cnblogs.com/DancingOnTheTree/p/4026076.html htt ...
- Bzoj3837 [Pa2013]Filary(随机化)
题面 权限题 题解 这题有一个很好的性质,就是一定有$k>\frac n2$.接着考虑怎么做. 我们随机选取一个数$x$,然后将所有数与它作差,那么只需要找出$k$个差值使得他们的最大公因数大于 ...
- BZOJ 3733 [Pa2013]Iloczyn 模拟爆搜
Description 给定正整数n和k,问能否将n分解为k个不同正整数的乘积 Input 第一行一个数T(T<=4000)表示测试组数 接下来T行每行两个数n(n<=10^9),k(k& ...
- bzoj 3733: [Pa2013]Iloczyn【dfs】
参考:http://www.cnblogs.com/clrs97/p/5125976.html 瞎搞约数失败...滚去搜索 dfs(x,y,z) 表示当前可选第x到第m个约数,还要选y个约数,已有z的 ...
随机推荐
- SQL Server 数据库设计、命名、编码规范
https://blog.csdn.net/songguozhi/article/details/5858159 SQL Server 数据库设计.命名.编码规范
- dom4j工具对XML写入修改删除操作实现
import org.dom4j.Document; import org.dom4j.DocumentException; import org.dom4j.io.SAXReader; import ...
- add_header 'Cache-Control' 'no-store, no-cache, must-revalidate, proxy-revalidate, max-age=0'
发送一个报头,告诉浏览器当前页面不进行缓存,每次访问的时间必须从服务器上读取最新的数据 一般情况下,浏览器为了加快浏览速度会对网页进行缓存,在一定时间内再次访问同一页面的时候会有缓存里面读取而不是从服 ...
- 学习前端第一天心得体会(初步了解HTML5的新特性以及和HTML的区别)
一.HTML5是什么? HTML5 是最新的 HTML 标准. HTML5 是专门为承载丰富的 web 内容而设计的,并且无需额外插件. HTML5 拥有新的语义.图形以及多媒体元素. HTML5 提 ...
- Monkeyrunner 使用说明
monkeyrunner为android系统新公开的一个测试工具.有助于开发人员通过脚本部署较大规模的自动化测试. Monkeyrunner 本文档中包含 一个简单的monkeyrunne ...
- Android adb.exe 开发模试安装
1.安装 adb . 让它直接能在cmd 窗口运行 下载:platform-tools 这个就行: Download SDK Platform-Tools for Windows 下载完成后直接解压 ...
- CnPack开发包基础库
unit CnCommon; {* |<PRE> ===================================================================== ...
- UITableView的使用总结
直接贴代码了,很好理解,注释很全,一看就懂...... // // ViewController.m // TableViewSectionTitleDemo // // Created by 思 彭 ...
- 关于torchvision.datasets.CIFAR10
在Pytorch0.4版本的DARTS代码里,有一行代码是 trn_data = datasets.CIFAR10(root=data_path, train=True, download=False ...
- 浅谈TCP扫描与SYN扫描与FIN扫描
下面就这三种方法来小小的探讨一下,不对的地方还请多多指教! 1:TCP扫描 相对来说是速度比较慢的一种,为什么会慢呢?因为这种方法在扫描的时候会从本地主机的一个端口向目标主机的一个端口发出一个连接请求 ...