题目链接:

https://www.lydsy.com/JudgeOnline/problem.php?id=1061

题目大意:

申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管。布布刚上任就遇到了一个难题:为即将启动的奥运新项目招募一批短期志愿者。经过估算,这个项目需要N 天才能完成,其中第i 天至少需要Ai 个人。 布布通过了解得知,一共有M 类志愿者可以招募。其中第i 类可以从第Si 天工作到第Ti 天,招募费用是每人Ci 元。新官上任三把火,为了出色地完成自己的工作,布布希望用尽量少的费用招募足够的志愿者,但这并不是他的特长!于是布布找到了你,希望你帮他设计一种最优的招募方案。
思路:
还有一篇讲的比较通俗易懂,用填坑来建图:https://blog.csdn.net/u013368721/article/details/39900027
 
 #include<bits/stdc++.h>
#define IOS ios::sync_with_stdio(false);//不可再使用scanf printf
#define Max(a, b) ((a) > (b) ? (a) : (b))//禁用于函数,会超时
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Mem(a) memset(a, 0, sizeof(a))
#define Dis(x, y, x1, y1) ((x - x1) * (x - x1) + (y - y1) * (y - y1))
#define MID(l, r) ((l) + ((r) - (l)) / 2)
#define lson ((o)<<1)
#define rson ((o)<<1|1)
#pragma comment(linker, "/STACK:102400000,102400000")//栈外挂
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while (ch<''||ch>''){if (ch=='-') f=-;ch=getchar();}
while (ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
typedef long long ll;
const int maxn = + ;
const int mod = ;//const引用更快,宏定义也更快
const int INF = 1e9; struct edge
{
int u, v, c, f, cost;
edge(int u, int v, int c, int f, int cost):u(u), v(v), c(c), f(f), cost(cost){}
};
vector<edge>e;
vector<int>G[maxn];
int a[maxn];//找增广路每个点的水流量
int p[maxn];//每次找增广路反向记录路径
int d[maxn];//SPFA算法的最短路
int inq[maxn];//SPFA算法是否在队列中
int n, m;
void init(int n)
{
for(int i = ; i <= n; i++)G[i].clear();
e.clear();
}
void addedge(int u, int v, int c, int cost)
{
e.push_back(edge(u, v, c, , cost));
e.push_back(edge(v, u, , , -cost));
int m = e.size();
G[u].push_back(m - );
G[v].push_back(m - );
}
bool bellman(int s, int t, int& flow, long long & cost)
{
for(int i = ; i <= n + ; i++)d[i] = INF;//Bellman算法的初始化
memset(inq, , sizeof(inq));
d[s] = ;inq[s] = ;//源点s的距离设为0,标记入队
p[s] = ;a[s] = INF;//源点流量为INF(和之前的最大流算法是一样的) queue<int>q;//Bellman算法和增广路算法同步进行,沿着最短路拓展增广路,得出的解一定是最小费用最大流
q.push(s);
while(!q.empty())
{
int u = q.front();
q.pop();
inq[u] = ;//入队列标记删除
for(int i = ; i < G[u].size(); i++)
{
edge & now = e[G[u][i]];
int v = now.v;
if(now.c > now.f && d[v] > d[u] + now.cost)
//now.c > now.f表示这条路还未流满(和最大流一样)
//d[v] > d[u] + e.cost Bellman 算法中边的松弛
{
d[v] = d[u] + now.cost;//Bellman 算法边的松弛
p[v] = G[u][i];//反向记录边的编号
a[v] = min(a[u], now.c - now.f);//到达v点的水量取决于边剩余的容量和u点的水量
if(!inq[v]){q.push(v);inq[v] = ;}//Bellman 算法入队
}
}
}
if(d[t] == INF)return false;//找不到增广路
flow += a[t];//最大流的值,此函数引用flow这个值,最后可以直接求出flow
cost += (long long)d[t] * (long long)a[t];//距离乘上到达汇点的流量就是费用
for(int u = t; u != s; u = e[p[u]].u)//逆向存边
{
e[p[u]].f += a[t];//正向边加上流量
e[p[u] ^ ].f -= a[t];//反向边减去流量 (和增广路算法一样)
}
return true;
}
int MincostMaxflow(int s, int t, long long & cost)
{
cost = ;
int flow = ;
while(bellman(s, t, flow, cost));//由于Bellman函数用的是引用,所以只要一直调用就可以求出flow和cost
return flow;//返回最大流,cost引用可以直接返回最小费用
}
int main()
{
int U = 1e5;
scanf("%d%d", &n, &m);
int s = , t = n + , x;
addedge(s, , U, );//从源点到出发点连边 流量为U
for(int i = ; i <= n; i++)
{
scanf("%d", &x);
addedge(i, i + , U - x, );//把需要的人当做坑来填满 这样流到汇点t的流量会小于U
}
int u, v, w;
for(int i = ; i <= m; i++)//对于每种类型的员工,连边u->v+1 这样可以保证从u出发到v+1的流量增加 也就是填坑
{
scanf("%d%d%d", &u, &v, &w);
addedge(u, v + , INF, w);//流量为INF 费用为w
}
long long cost;
MincostMaxflow(s, t, cost);
printf("%lld\n", cost);
return ;
}
 

BZOJ 1061 志愿者招募 最小费用流&&线性规划建模的更多相关文章

  1. bzoj 1061 志愿者招募(最小费用最大流)

    [Noi2008]志愿者招募 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 3792  Solved: 2314[Submit][Status][Di ...

  2. BZOJ 1061 志愿者招募(最小费用最大流)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1061 题意:申奥成功后,布布经过不懈努力,终于 成为奥组委下属公司人力资源部门的主管.布 ...

  3. bzoj 1061 志愿者招募 有上下界费用流做法

    把每一天看作一个点,每一天的志愿者数目就是流量限制,从i到i+1连边,上下界就是(A[i],+inf). 对于每一类志愿者,从T[i]+1到S[i]连边,费用为招募一个志愿者的费用,流量为inf.这样 ...

  4. BZOJ 1061 志愿者招募

    http://www.lydsy.com/JudgeOnline/problem.php?id=1061 思路:可以用不等式的改装变成费用流. 将不等式列出,如果有负的常数,那么就从等式连向T,如果是 ...

  5. bzoj 1061 志愿者招募 费用流

    详见BYV的博客,写的非常全面https://www.byvoid.com/blog/noi-2008-employee /************************************** ...

  6. 【BZOJ 1061】 1061: [Noi2008]志愿者招募 (线性规划与网络流)**

    1061: [Noi2008]志愿者招募 Description 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难 题:为即将启动的奥运新项目招募一批短 ...

  7. bzoj [Noi2008] 1061 志愿者招募 单纯形

    [Noi2008]志愿者招募 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 5437  Solved: 3267[Submit][Status][Di ...

  8. BZOJ 3265 志愿者招募加强版(单纯形)

    3265: 志愿者招募加强版 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 848  Solved: 436[Submit][Status][Disc ...

  9. BZOJ 1061: [Noi2008]志愿者招募(线性规划与网络流)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1061 题意: 思路: 直接放上大神的建模过程!!!(https://www.byvoid.com/z ...

随机推荐

  1. CSS小技巧(一)

    左右布局 将内部的子元素加浮动,父元素清除浮动即可. 代码: <!DOCTYPE html> <html> <head> <title>test< ...

  2. postgresql 备份与恢复

    备份 C:\PostgreSQL\\bin>pg_dump -h localhost -p -U postgres Mes > d:/.bak 恢复 C:\PostgreSQL\\bin& ...

  3. WPF 小知识点001

    1.DataGrid 单选事件 <DataGrid MinHeight="150"                  AutoGenerateColumns="Fa ...

  4. MySQL学习基础

    MySQL是被Sun公司收购了,所以也有热咖啡图标,不过MySQL的作者后来又做了一个MariaDB,小海豚图标,也很好用. MySQL学习: <MySQL网络数据库设计与开发>(电子工业 ...

  5. windbg .net 程序的死锁检测 常用方法(个人备份笔记)

    //死锁检测 .load sosex.dll :> !dlk :> !mk -a The mk command displays a call stack of the currently ...

  6. JAVA jar 和 war 包的区别

    一. jar 包 JAR(Java Archive,Java 归档文件)是与平台无关的文件格式,它允许将许多文件组合成一个压缩文件.JavaSE程序可以打包成Jar包(J其实可以理解为Java了). ...

  7. Java 双亲委派模型

    1. Java 类加载器的分类 2. 双亲委派模型 Parents Delegration Model

  8. poj 2417 Discrete Logging ---高次同余第一种类型。babystep_gaint_step

    Discrete Logging Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 2831   Accepted: 1391 ...

  9. Java基础小结

    JavaSE基础 本文为作者在学习和笔试题中遇到的小知识点总结,做以总结和备用. jdk的安装和配置环境变量 (1)以win10为例,右键此电脑,选择属性,进去系统设置,选择高级系统设置,进入环境变量 ...

  10. JDBC入门(5)--- 时间类型、大数据

    一.时间类型 数据库类型与Java中类型的对应关系: DATE->java.sql.Date:表示日期,只有年月日,没有时分秒,会丢失时间. TIME->java.sql.Time:表示时 ...