Mirror and Light

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 814    Accepted Submission(s): 385

Problem Description
The light travels in a straight line and always goes in the minimal path between two points, are the basic laws of optics.

Now, our problem is that, if a branch of light goes into a large and infinite mirror, of course,it will reflect, and leave away the mirror in another direction. Giving you the position of mirror and the two points the light goes in before and after the reflection, calculate the reflection point of the light on the mirror.
  
You can assume the mirror is a straight line and the given two points can’t be on the different sizes of the mirror.

 
Input
The first line is the number of test case t(t<=100).
  
The following every four lines are as follow:
  X1 Y1
  X2 Y2
  Xs Ys
  Xe Ye

(X1,Y1),(X2,Y2) mean the different points on the mirror, and (Xs,Ys) means the point the light travel in before the reflection, and (Xe,Ye) is the point the light go after the reflection.

The eight real number all are rounded to three digits after the decimal point, and the absolute values are no larger than 10000.0.

 
Output
  Each lines have two real number, rounded to three digits after the decimal point, representing the position of the reflection point.
 
Sample Input
1
0.000 0.000
4.000 0.000
1.000 1.000
3.000 1.000
 
Sample Output
2.000 0.000
 
Source

题目大意:给一面镜子(一直线),给一入射光经过的点跟反射光经过的点,求入射点。

思路:求一个点关于镜子的对称点,与另一点与镜子的交点就是入射点。

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std; const double eps=1e-;
const double Pi=acos(-1.0);
struct Point
{
double x,y;
Point(double x=,double y=):x(x),y(y) {}
};
typedef Point Vector;
Vector operator +(Vector A,Vector B){return Vector(A.x+B.x,A.y+B.y);}
Vector operator -(Vector A,Vector B){return Vector(A.x-B.x,A.y-B.y);}
Vector operator *(Vector A,double p){return Vector(A.x*p,A.y*p);}
int dcmp(double x)
{
if(fabs(x)<eps) return ;
else return x<?-:;
} double Dot(Vector A,Vector B){return A.x*B.x+A.y*B.y;}//点积
double Length(Vector A){return sqrt(Dot(A,A));}//向量的长度
double Angle(Vector A,Vector B){return acos(Dot(A,B)/Length(A)/Length(B));}//两向量的夹角
double Cross(Vector A,Vector B){ return A.x*B.y-A.y*B.x;}//叉积
Point GetLineProjection(Point P,Point A,Point B)//P在直线AB上的投影点
{
Vector v=B-A;
return A+v*(Dot(v,P-A)/Dot(v,v));
}
Point GetLineIntersection(Point P,Vector v,Point Q,Vector w)//两直线的交点
{
Vector u=P-Q;
double t=Cross(w,u)/Cross(v,w);
return P+v*t;
} Point read_point()
{
Point p;
scanf("%lf%lf",&p.x,&p.y);
return p;
}
int main()
{
int t;
Point p1,p2,p3,p4,p5;
scanf("%d",&t);
while(t--)
{
p1=read_point();p2=read_point();p3=read_point();p4=read_point();
p5= GetLineProjection(p3,p1,p2);
p5=p3+(p5-p3)*;
p5=GetLineIntersection(p5,p5-p4,p1,p2-p1);
printf("%.3lf %.3lf\n",p5.x,p5.y);
}
return ;
}

hdu 2857 点在直线上的投影+直线的交点的更多相关文章

  1. BZOJ3403: [Usaco2009 Open]Cow Line 直线上的牛

    3403: [Usaco2009 Open]Cow Line 直线上的牛 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 48  Solved: 41[S ...

  2. BZOJ 3403: [Usaco2009 Open]Cow Line 直线上的牛( deque )

    直接用STL的的deque就好了... ---------------------------------------------------------------------- #include& ...

  3. 3403: [Usaco2009 Open]Cow Line 直线上的牛

    3403: [Usaco2009 Open]Cow Line 直线上的牛 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 71  Solved: 62[S ...

  4. 【BZOJ】3403: [Usaco2009 Open]Cow Line 直线上的牛(模拟)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3404 裸的双端队列.. #include <cstdio> #include <c ...

  5. B3403 [Usaco2009 Open]Cow Line 直线上的牛 deque

    deque真的秀,queue和stack...没啥用了啊.操作差不多,就是在前面加一个front||back_就行了. 题干: 题目描述 题目描述     约翰的N只奶牛(编为1到N号)正在直线上排队 ...

  6. hdu 2857 求点关于线段的对称点

    本来很简单的一个题,但是有个大坑: 因为模板中Tline用到了直线的一般方程ax+by+c=0,所以有种很坑的情况需要特判: 斜率不存在啊喂 老子坑了一下午2333 #include <math ...

  7. p点到(a,b)点两所在直线的垂点坐标及p点是否在(a,b)两点所在直线上

     /// <summary>         ///  p点到(a,b)点两所在直线的垂点坐标         /// </summary>         /// <p ...

  8. lintcode 中等题:Max Points on a Line 最多有多少个点在一条直线上

    题目 最多有多少个点在一条直线上 给出二维平面上的n个点,求最多有多少点在同一条直线上. 样例 给出4个点:(1, 2), (3, 6), (0, 0), (1, 3). 一条直线上的点最多有3个. ...

  9. 一条直线上N个线段所覆盖的总长度

    原文:http://blog.csdn.net/bxyill/article/details/8962832 问题描述: 现有一直线,从原点到无穷大. 这条直线上有N个线段.线段可能相交. 问,N个线 ...

随机推荐

  1. C10 C语言数据结构

    目录 枚举 结构体 共用体 枚举 enum enum枚举是 C 语言中的一种基本数据类型,它可以让数据更简洁,更易读. 枚举语法定义格式为: enum 枚举名 {枚举元素1,枚举元素2,……}; 枚举 ...

  2. JavaScript -- 操作符和逻辑运算

    算数操作符 + : 加 - : 减 * : 乘 / : 除 %:取余 递增和递减 1.递增 ++a与a++都是对a进行递增的操作 区别 ++a先返回递增之后的a的值 a++先返回a的原值,再返回递增之 ...

  3. javaweb基础(13)_session防止表单重复提交

    在平时开发中,如果网速比较慢的情况下,用户提交表单后,发现服务器半天都没有响应,那么用户可能会以为是自己没有提交表单,就会再点击提交按钮重复提交表单,我们在开发中必须防止表单重复提交. 一.表单重复提 ...

  4. 字符串 -----JavaScript

    本文摘要:http://www.liaoxuefeng.com/ JavaScript的字符串就是用''或""括起来的字符表示. 如果'本身也是一个字符,那就可以用"&q ...

  5. Java第7次作业:造人类(用private封装,用static关键字自己造重载输出方法)什么是面向对象程序设计?什么是类和对象?什么是无参有参构造方法 ?什么是封装?

    什么是面向对象程序设计? 我们称为OOP(Object  Oriented  Programming) 就是非结构化的程序设计 要使用类和对象的方法来进行编程 什么是类,什么是对象 类就是封装了属性和 ...

  6. cocos2dx 单张图片加密

    cocos2dx 已经封装好读取加密的prv文件的方法,打开texturepacker,导入一张图片,在content protection中写入密钥,在texture format中选择prv格式 ...

  7. cephfs 挂载 卸载

    #挂载 sudo ceph-fuse -m 10.1.xx.231:6789,10.1.xx.232:6789,10.1.xx.233:6789 -r /MySQL-BK /data/backup # ...

  8. JS - Array.prototype.sort(compare)

    function compare(a, b) { return -1; // a 在 b 前面 return 1; // a 在 b 后面 return 0; // 并列排序,保持在源数组中的先后顺序 ...

  9. intellij idea 下载安装破解教程

    官网下载:http://www.jetbrains.com/idea/download/#section=windows 选择  Ultimate 版本下载 下载完成后,打开安装 在安装路径位置,可以 ...

  10. 2-python基础

    1.第一个程序 新建一个python文件,然后写上代码,运行即可 print("hello world") 2.变量 变量就是存东西,供后面来用的 变量名只能是 字母.数字或下划线 ...