runoob-NumPy(python)
https://www.runoob.com/numpy/numpy-tutorial.html
NumPy 教程
NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。
NumPy 的前身 Numeric 最早是由 Jim Hugunin 与其它协作者共同开发,2005 年,Travis Oliphant 在 Numeric 中结合了另一个同性质的程序库 Numarray 的特色,并加入了其它扩展而开发了 NumPy。NumPy 为开放源代码并且由许多协作者共同维护开发。
NumPy 是一个运行速度非常快的数学库,主要用于数组计算,包含:
- 一个强大的N维数组对象 ndarray
- 广播功能函数
- 整合 C/C++/Fortran 代码的工具
- 线性代数、傅里叶变换、随机数生成等功能
NumPy 应用
NumPy 通常与 SciPy(Scientific Python)和 Matplotlib(绘图库)一起使用, 这种组合广泛用于替代 MatLab,是一个强大的科学计算环境,有助于我们通过 Python 学习数据科学或者机器学习。
SciPy 是一个开源的 Python 算法库和数学工具包。
SciPy 包含的模块有最优化、线性代数、积分、插值、特殊函数、快速傅里叶变换、信号处理和图像处理、常微分方程求解和其他科学与工程中常用的计算。
Matplotlib 是 Python 编程语言及其数值数学扩展包 NumPy 的可视化操作界面。它为利用通用的图形用户界面工具包,如 Tkinter, wxPython, Qt 或 GTK+ 向应用程序嵌入式绘图提供了应用程序接口(API)。
Mac 系统
Mac 系统的 Homebrew 不包含 NumPy 或其他一些科学计算包,所以可以使用以下方式来安装:
pip3 install numpy scipy matplotlib -i https://pypi.tuna.tsinghua.edu.cn/simple
NumPy Ndarray 对象
NumPy 最重要的一个特点是其 N 维数组对象 ndarray,它是一系列同类型数据的集合,以 0 下标为开始进行集合中元素的索引。
ndarray 对象是用于存放同类型元素的多维数组。
ndarray 中的每个元素在内存中都有相同存储大小的区域。
ndarray 内部由以下内容组成:
一个指向数据(内存或内存映射文件中的一块数据)的指针。
数据类型或 dtype,描述在数组中的固定大小值的格子。
一个表示数组形状(shape)的元组,表示各维度大小的元组。
一个跨度元组(stride),其中的整数指的是为了前进到当前维度下一个元素需要"跨过"的字节数。
ndarray 的内部结构:

跨度可以是负数,这样会使数组在内存中后向移动,切片中 obj[::-1] 或 obj[:,::-1] 就是如此。
创建一个 ndarray 只需调用 NumPy 的 array 函数即可:
numpy.array(object, dtype = None, copy = True, order = None, subok = False, ndmin = 0)
参数说明:
| 名称 | 描述 |
|---|---|
| object | 数组或嵌套的数列 |
| dtype | 数组元素的数据类型,可选 |
| copy | 对象是否需要复制,可选 |
| order | 创建数组的样式,C为行方向,F为列方向,A为任意方向(默认) |
| subok | 默认返回一个与基类类型一致的数组 |
| ndmin | 指定生成数组的最小维度 |
实例
接下来可以通过以下实例帮助我们更好的理解。
实例 1
输出结果如下:
[1 2 3]
实例 2
输出结果如下:
[[1 2]
[3 4]]
实例 3
输出如下:
[[1 2 3 4 5]]
实例 4
输出结果如下:
[1.+0.j 2.+0.j 3.+0.j]
NumPy 数据类型
numpy 支持的数据类型比 Python 内置的类型要多很多,基本上可以和 C 语言的数据类型对应上,其中部分类型对应为 Python 内置的类型。下表列举了常用 NumPy 基本类型。
| 名称 | 描述 |
|---|---|
| bool_ | 布尔型数据类型(True 或者 False) |
| int_ | 默认的整数类型(类似于 C 语言中的 long,int32 或 int64) |
| intc | 与 C 的 int 类型一样,一般是 int32 或 int 64 |
| intp | 用于索引的整数类型(类似于 C 的 ssize_t,一般情况下仍然是 int32 或 int64) |
| int8 | 字节(-128 to 127) |
| int16 | 整数(-32768 to 32767) |
| int32 | 整数(-2147483648 to 2147483647) |
| int64 | 整数(-9223372036854775808 to 9223372036854775807) |
| uint8 | 无符号整数(0 to 255) |
| uint16 | 无符号整数(0 to 65535) |
| uint32 | 无符号整数(0 to 4294967295) |
| uint64 | 无符号整数(0 to 18446744073709551615) |
| float_ | float64 类型的简写 |
| float16 | 半精度浮点数,包括:1 个符号位,5 个指数位,10 个尾数位 |
| float32 | 单精度浮点数,包括:1 个符号位,8 个指数位,23 个尾数位 |
| float64 | 双精度浮点数,包括:1 个符号位,11 个指数位,52 个尾数位 |
| complex_ | complex128 类型的简写,即 128 位复数 |
| complex64 | 复数,表示双 32 位浮点数(实数部分和虚数部分) |
| complex128 | 复数,表示双 64 位浮点数(实数部分和虚数部分) |
numpy 的数值类型实际上是 dtype 对象的实例,并对应唯一的字符,包括 np.bool_,np.int32,np.float32,等等。
数据类型对象 (dtype)
数据类型对象(numpy.dtype 类的实例)用来描述与数组对应的内存区域是如何使用,它描述了数据的以下几个方面::
- 数据的类型(整数,浮点数或者 Python 对象)
- 数据的大小(例如, 整数使用多少个字节存储)
- 数据的字节顺序(小端法或大端法)
- 在结构化类型的情况下,字段的名称、每个字段的数据类型和每个字段所取的内存块的部分
- 如果数据类型是子数组,那么它的形状和数据类型是什么。
字节顺序是通过对数据类型预先设定 < 或 > 来决定的。 < 意味着小端法(最小值存储在最小的地址,即低位组放在最前面)。> 意味着大端法(最重要的字节存储在最小的地址,即高位组放在最前面)。
dtype 对象是使用以下语法构造的:
numpy.dtype(object, align, copy)
- object - 要转换为的数据类型对象
- align - 如果为 true,填充字段使其类似 C 的结构体。
- copy - 复制 dtype 对象 ,如果为 false,则是对内置数据类型对象的引用
NumPy 数组属性
本章节我们将来了解 NumPy 数组的一些基本属性。
NumPy 数组的维数称为秩(rank),秩就是轴的数量,即数组的维度,一维数组的秩为 1,二维数组的秩为 2,以此类推。
在 NumPy中,每一个线性的数组称为是一个轴(axis),也就是维度(dimensions)。比如说,二维数组相当于是两个一维数组,其中第一个一维数组中每个元素又是一个一维数组。所以一维数组就是 NumPy 中的轴(axis),第一个轴相当于是底层数组,第二个轴是底层数组里的数组。而轴的数量——秩,就是数组的维数。
很多时候可以声明 axis。axis=0,表示沿着第 0 轴进行操作,即对每一列进行操作;axis=1,表示沿着第1轴进行操作,即对每一行进行操作。
NumPy 的数组中比较重要 ndarray 对象属性有:
| 属性 | 说明 |
|---|---|
| ndarray.ndim | 秩,即轴的数量或维度的数量 |
| ndarray.shape | 数组的维度,对于矩阵,n 行 m 列 |
| ndarray.size | 数组元素的总个数,相当于 .shape 中 n*m 的值 |
| ndarray.dtype | ndarray 对象的元素类型 |
| ndarray.itemsize | ndarray 对象中每个元素的大小,以字节为单位 |
| ndarray.flags | ndarray 对象的内存信息 |
| ndarray.real | ndarray元素的实部 |
| ndarray.imag | ndarray 元素的虚部 |
| ndarray.data | 包含实际数组元素的缓冲区,由于一般通过数组的索引获取元素,所以通常不需要使用这个属性。 |
ndarray.ndim
ndarray.ndim 用于返回数组的维数,等于秩。
实例
NumPy 创建数组
ndarray 数组除了可以使用底层 ndarray 构造器来创建外,也可以通过以下几种方式来创建。
numpy.empty
numpy.empty 方法用来创建一个指定形状(shape)、数据类型(dtype)且未初始化的数组:
numpy.empty(shape, dtype = float, order = 'C')
参数说明:
| 参数 | 描述 |
|---|---|
| shape | 数组形状 |
| dtype | 数据类型,可选 |
| order | 有"C"和"F"两个选项,分别代表,行优先和列优先,在计算机内存中的存储元素的顺序。 |
下面是一个创建空数组的实例:
实例
NumPy 广播(Broadcast)
广播(Broadcast)是 numpy 对不同形状(shape)的数组进行数值计算的方式, 对数组的算术运算通常在相应的元素上进行。
如果两个数组 a 和 b 形状相同,即满足 a.shape == b.shape,那么 a*b 的结果就是 a 与 b 数组对应位相乘。这要求维数相同,且各维度的长度相同。
实例
输出结果为:
[ 10 40 90 160]
NumPy 迭代数组
NumPy 迭代器对象 numpy.nditer 提供了一种灵活访问一个或者多个数组元素的方式。
迭代器最基本的任务的可以完成对数组元素的访问。
接下来我们使用 arange() 函数创建一个 2X3 数组,并使用 nditer 对它进行迭代。
实例
输出结果为:
Numpy 数组操作
Numpy 中包含了一些函数用于处理数组,大概可分为以下几类:
修改数组形状
| 函数 | 描述 |
|---|---|
reshape |
不改变数据的条件下修改形状 |
flat |
数组元素迭代器 |
flatten |
返回一份数组拷贝,对拷贝所做的修改不会影响原始数组 |
ravel |
返回展开数组 |
numpy.reshape
numpy.reshape 函数可以在不改变数据的条件下修改形状,格式如下:
numpy.reshape(arr, newshape, order='C')
NumPy 线性代数
NumPy 提供了线性代数函数库 linalg,该库包含了线性代数所需的所有功能,可以看看下面的说明:
| 函数 | 描述 |
|---|---|
dot |
两个数组的点积,即元素对应相乘。 |
vdot |
两个向量的点积 |
inner |
两个数组的内积 |
matmul |
两个数组的矩阵积 |
determinant |
数组的行列式 |
solve |
求解线性矩阵方程 |
inv |
计算矩阵的乘法逆矩阵 |
numpy.dot()
numpy.dot() 对于两个一维的数组,计算的是这两个数组对应下标元素的乘积和(数学上称之为内积);对于二维数组,计算的是两个数组的矩阵乘积;对于多维数组,它的通用计算公式如下,即结果数组中的每个元素都是:数组a的最后一维上的所有元素与数组b的倒数第二位上的所有元素的乘积和: dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m])。
numpy.dot(a, b, out=None)
参数说明:
- a : ndarray 数组
- b : ndarray 数组
- out : ndarray, 可选,用来保存dot()的计算结果
实例
输出结果为:
[[37 40]
[85 92]]
NumPy IO
Numpy 可以读写磁盘上的文本数据或二进制数据。
NumPy 为 ndarray 对象引入了一个简单的文件格式:npy。
npy 文件用于存储重建 ndarray 所需的数据、图形、dtype 和其他信息。
常用的 IO 函数有:
- load() 和 save() 函数是读写文件数组数据的两个主要函数,默认情况下,数组是以未压缩的原始二进制格式保存在扩展名为 .npy 的文件中。
- savez() 函数用于将多个数组写入文件,默认情况下,数组是以未压缩的原始二进制格式保存在扩展名为 .npz 的文件中。
- loadtxt() 和 savetxt() 函数处理正常的文本文件(.txt 等)
numpy.save()
numpy.save() 函数将数组保存到以 .npy 为扩展名的文件中。
numpy.save(file, arr, allow_pickle=True, fix_imports=True)
参数说明:
- file:要保存的文件,扩展名为 .npy,如果文件路径末尾没有扩展名 .npy,该扩展名会被自动加上。
- arr: 要保存的数组
- allow_pickle: 可选,布尔值,允许使用 Python pickles 保存对象数组,Python 中的 pickle 用于在保存到磁盘文件或从磁盘文件读取之前,对对象进行序列化和反序列化。
- fix_imports: 可选,为了方便 Pyhton2 中读取 Python3 保存的数据。
runoob-NumPy(python)的更多相关文章
- https://www.runoob.com/python/python-variable-types.html
https://www.runoob.com/python/python-variable-types.html
- Numpy Python
如果一个数组太长,则NumPy自动省略中间部分而只打印两端的数据: 可通过设置printoptions参数来禁用NumPy的这种行为并强制打印整个数组. set_printoptions(thresh ...
- Python 读取UCI iris数据集分析、numpy基础学习
python基础.numpy使用.io读取数据集.数据处理转换与简单分析.读取UCI iris数据集中鸢尾花的萼片.花瓣长度数据,进行数据清理,去重,排序,并求出和.累积和.均值.标准差.方差.最大值 ...
- python和numpy中sum()函数的异同
转载:https://blog.csdn.net/amuchena/article/details/89060798和https://www.runoob.com/python/python-func ...
- python numpy笔记:给matlab使用者
利用Numpy,python可以进行有效的科学计算.本文给过去常用matlab,现在正学习Numpy的人. 在进行矩阵运算等操作时,使用array还是matrix?? 简短的回答,更多的时候使用arr ...
- python的numpy.array
为什么要用numpy Python中提供了list容器,可以当作数组使用.但列表中的元素可以是任何对象,因此列表中保存的是对象的指针,这样一来,为了保存一个简单的列表[1,2,3].就需要三个指针和三 ...
- Python 机器学习库 NumPy 教程
0 Numpy简单介绍 Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy.matplotlib一起使用.其实,list已经提供了类似于矩阵的表示形式,不过numpy ...
- Python数据分析——numpy基础简介
前言 本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者:基因学苑 NumPy(Numerical Python的简称)是高性 ...
- 如何用Python中自带的Pandas和NumPy库进行数据清洗
一.概况 1.数据清洗到底是在清洗些什么? 通常来说,你所获取到的原始数据不能直接用来分析,因为它们会有各种各样的问题,如包含无效信息,列名不规范.格式不一致,存在重复值,缺失值,异常值等..... ...
- Python环境的安装
参考官方文档 http://www.runoob.com/python/python-install.html Python已经被移植在许多平台上(经过改动使它能够工作在不同平台上). 您需要下载适用 ...
随机推荐
- Lattice、Xilinx FPGA reg初始化赋值问题
一.起因 最近在开发Lattice的一款低功耗FPGA时,遇到了reg初始化复位问题,经过在网上搜寻相关资料整理如下: 二.FPGA中reg的初始化方式 在定义时初始化,例如: reg r_test ...
- php 版本升级后需要对代码进行兼容性检测
来到需要检测代码的目录下 需要提前安装 docker 执行 docker run --rm -v $(pwd):/app vfac/php7compatibility 7.3 . --ignore=v ...
- 朋友要招几个java,让帮忙出点面试题目
上周朋友说要招几个高级点的java,网上那些java面试宝典已经被人背得熟透了,让帮忙出出几个面试的问题,主要看看对所使用得语言有较深入得了解,不停留在使用什么开源框架,和对自己一些项目得见解.当然还 ...
- Python之读写Excel
现有的Excel分为两种格式:xls(Excel 97-2003)和xlsx(Excel 2007及以上). Python处理Excel文件主要是第三方模块库xlrd.xlwt.pyexcel-xls ...
- 一文聊清楚Redis主从复制原理
本地缓存带来的挑战 分布式缓存相比于本地缓存,在实现层面需要关注的点有哪些不同.梳理如下: 维度 本地缓存 集中式缓存 缓存量 受限于单机内存大小,存储数据有限 需要提供给分布式系统里面所有节点共同使 ...
- canvas实例:绚丽小球
1.思路分析 监听页面尺寸变化(防抖),动态设置canvas大小 监听鼠标移动事件(节流),动态创建小球,小球包含大小,原点坐标,移动方向等信息,其内部方法支持移动和缩小 开启定时器,更新画布内容(清 ...
- 雪碧图的魔力:优化CSS动画场景
什么是雪碧图 雪碧图(CSS Sprites),是一种网页图像处理技术,它将多个小图标或图像合并成一个大的图像文件.这种方法允许浏览器通过一次HTTP请求加载多个图像,而不是为每个小图标单独发起请求. ...
- 使用TOPIAM 轻松搞定「Wiki.js」单点登录
本文将介绍 TOPIAM 与 Wiki 集成步骤详细指南. 应用简介 Wiki.js 是一款高度可定制且现代化的开源 Wiki 系统,专为团队知识管理和文档协作设计,具有强大的扩展性和跨平台支持能力. ...
- openEuler欧拉使用sshpass不输入密码远程登录其他服务器
ssh登陆不能在命令行中指定密码,sshpass 的出现则解决了这一问题.用 -p 参数指定明文密码,然后直接登录远程服务器,它支持密码从命令行.文件.环境变量中读取. 操作步骤: 一.关闭防火墙 ...
- Flutter TextField设置值后光标位置偏移
Flutter TextField设置值后光标位置偏移 一般用controller设置值是这样设置的 TextEditingController controller = TextEditingCon ...