题意

给一颗带点权的树,三种操作

  • \(1~s~t\) 修改从1到s的路径上的所有点,\(a[i]=a[i]|t\)
  • \(2~s~t\) 修改从1到s的路径上的所有点,\(a[i]=a[i]\&t\)
  • \(3~s~t\) 询问将1到s的路径上的所有点作为石头堆,再加上一个个数为\(t\)的石头堆,进行一次尼姆博弈,先手胜利输出YES,否则输出NO

分析

尼姆博弈先手必胜条件为所有石头堆异或和为0,将询问转化为求1到s的路径上的所有点的异或和,

先树链剖分一下给每个点重新编号,然后线段树维护区间异或和

怎么维护区间异或和?对二进制的每一位建一颗线段树维护区间和(当前二进制位为1的数量),若区间和为奇数说明这一位的区间异或结果为1,否则为0

怎么修改?

  • 修改1为区间或操作:对于二进制的第\(i\)位,若\(t\)的二进制第\(i\)位为1,则会将从1到s的路径上的点权的二进制第\(i\)位全变为1,若\(t\)的二进制第\(i\)位为0,则无影响

  • 修改2为区间与操作:对于二进制的第\(i\)位,若\(t\)的二进制第\(i\)位为0,则会将从1到s的路径上的点权的二进制第\(i\)位全变为0,若\(t\)的二进制第\(i\)位为1,则无影响

Code

#include<bits/stdc++.h>
#define fi first
#define se second
#define pb push_back
#define lson l,mid,p<<1
#define rson mid+1,r,p<<1|1
#define ll long long
using namespace std;
const int inf=1e9;
const int mod=1e9+7;
const int maxn=1e5+10;
int n,q;
int a[maxn];
vector<int>g[maxn];
int sz[maxn],son[maxn],f[maxn],d[maxn],top[maxn],p[maxn],tot;
struct ppo{
int tr[maxn<<2],tag[maxn<<2];
void clear(){memset(tag,-1,sizeof(tag));}
void pp(int p){
tr[p]=(tr[p<<1]+tr[p<<1|1]);
}
void pd(int l,int r,int p,int k){
tr[p]=(r-l+1)*k;tag[p]=k;
}
void up(int dl,int dr,int l,int r,int p,int k){
if(l>=dl&&r<=dr){
tr[p]=(r-l+1)*k;tag[p]=k;return;
}int mid=(l+r)>>1;
if(~tag[p]){pd(lson,tag[p]);pd(rson,tag[p]);tag[p]=-1;}
if(dl<=mid) up(dl,dr,lson,k);
if(dr>mid) up(dl,dr,rson,k);
pp(p);
}
int qy(int dl,int dr,int l,int r,int p){
if(l>=dl&&r<=dr){
return tr[p]&1;
}int mid=(l+r)>>1;int ret=0;
if(~tag[p]){pd(lson,tag[p]);pd(rson,tag[p]);tag[p]=-1;}
if(dl<=mid) ret^=qy(dl,dr,lson);
if(dr>mid) ret^=qy(dl,dr,rson);
return ret;
}
}seg[33];
void add(int x){
int k=a[x];
for(int i=0;i<=30;i++) seg[i].up(p[x],p[x],1,n,1,(k>>i)&1);
}
void dfs1(int u){
sz[u]=1;d[u]=d[f[u]]+1;
for(int x:g[u]){
if(x==f[u]) continue;
f[x]=u;dfs1(x);
sz[u]+=sz[x];
if(sz[x]>sz[son[u]]) son[u]=x;
}
}
void dfs2(int u,int t){
top[u]=t;p[u]=++tot;add(u);
if(son[u]) dfs2(son[u],t);
for(int x:g[u]){
if(x==f[u]||x==son[u]) continue;
dfs2(x,x);
}
}
void gao(int x,int y,int s,int k){
while(top[x]!=top[y]){
if(d[top[x]]<d[top[y]]) swap(x,y);
seg[s].up(p[top[x]],p[x],1,n,1,k);x=f[top[x]];
}
if(d[x]<d[y]) swap(x,y);
seg[s].up(p[y],p[x],1,n,1,k);
}
int cal(int x,int y,int s){
int ret=0;
while(top[x]!=top[y]){
if(d[top[x]]<d[top[y]]) swap(x,y);
ret^=seg[s].qy(p[top[x]],p[x],1,n,1);
x=f[top[x]];
}
if(d[x]<d[y]) swap(x,y);
return seg[s].qy(p[y],p[x],1,n,1)^ret;
}
int main(){
//ios::sync_with_stdio(false);
//freopen("in","r",stdin);
scanf("%d%d",&n,&q);
for(int i=0;i<=30;i++) seg[i].clear();
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
for(int i=2,a,b;i<=n;i++){
scanf("%d%d",&a,&b);
g[a].push_back(b);
g[b].push_back(a);
}
dfs1(1);dfs2(1,1);
while(q--){
int op,s,t;
scanf("%d%d%d",&op,&s,&t);
if(op==1){
for(int i=0;i<=30;i++)
if((t>>i)&1) gao(1,s,i,1);
}else if(op==2){
for(int i=0;i<=30;i++)
if(!((t>>i)&1)) gao(1,s,i,0);
}else{
int ans=0;
for(int i=0;i<=30;i++)
if(cal(1,s,i)) ans|=(1<<i);
if(ans^t) puts("YES");
else puts("NO");
}
}
return 0;
}

2019 ACM-ICPC 西安全国邀请赛 E-Tree 树链剖分+线段树的更多相关文章

  1. Aizu 2450 Do use segment tree 树链剖分+线段树

    Do use segment tree Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.bnuoj.com/v3/problem_show ...

  2. 【POJ3237】Tree(树链剖分+线段树)

    Description You are given a tree with N nodes. The tree’s nodes are numbered 1 through N and its edg ...

  3. 2019西北工业大学程序设计创新实践基地春季选拔赛 I Chino with Rewrite (并查集+树链剖分+线段树)

    链接:https://ac.nowcoder.com/acm/contest/553/I 思路:离线整棵树,用并查集维护下联通的情况,因为值只有60个,用2的x(1<=x<=60)次方表示 ...

  4. POJ3237 Tree 树链剖分 线段树

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ3237 题意概括 Description 给你由N个结点组成的树.树的节点被编号为1到N,边被编号为1 ...

  5. 【CF725G】Messages on a Tree 树链剖分+线段树

    [CF725G]Messages on a Tree 题意:给你一棵n+1个节点的树,0号节点是树根,在编号为1到n的节点上各有一只跳蚤,0号节点是跳蚤国王.现在一些跳蚤要给跳蚤国王发信息.具体的信息 ...

  6. Spoj Query on a tree SPOJ - QTREE(树链剖分+线段树)

    You are given a tree (an acyclic undirected connected graph) with N nodes, and edges numbered 1, 2, ...

  7. Water Tree CodeForces 343D 树链剖分+线段树

    Water Tree CodeForces 343D 树链剖分+线段树 题意 给定一棵n个n-1条边的树,起初所有节点权值为0. 然后m个操作, 1 x:把x为根的子树的点的权值修改为1: 2 x:把 ...

  8. spoj QTREE - Query on a tree(树链剖分+线段树单点更新,区间查询)

    传送门:Problem QTREE https://www.cnblogs.com/violet-acmer/p/9711441.html 题解: 树链剖分的模板题,看代码比看文字解析理解来的快~~~ ...

  9. QTREE3 spoj 2798. Query on a tree again! 树链剖分+线段树

    Query on a tree again! 给出一棵树,树节点的颜色初始时为白色,有两种操作: 0.把节点x的颜色置反(黑变白,白变黑). 1.询问节点1到节点x的路径上第一个黑色节点的编号. 分析 ...

  10. poj 3237 Tree 树链剖分+线段树

    Description You are given a tree with N nodes. The tree’s nodes are numbered 1 through N and its edg ...

随机推荐

  1. vscode 连接远程服务器 sftp

    1.在vscode 应用商店搜索 sftp 下载安装 2.ctrl+shift+p 搜索sftp:config 生成sftp.json 3.配置你的服务器信息{ "name": & ...

  2. Spring Cloud Alibaba学习笔记(16) - Spring Cloud Gateway 内置的路由谓词工厂

    Spring Cloud Gateway路由配置的两种形式 Spring Cloud Gateway的路由配置有两种形式,分别是路由到指定的URL以及路由到指定的微服务,在上文博客的示例中我们就已经使 ...

  3. pytorch learning rate decay

    关于learning rate decay的问题,pytorch 0.2以上的版本已经提供了torch.optim.lr_scheduler的一些函数来解决这个问题. 我在迭代的时候使用的是下面的方法 ...

  4. 并发编程之Disruptor并发框架

    一.什么是Disruptor Martin Fowler在自己网站上写了一篇LMAX架构的文章,在文章中他介绍了LMAX是一种新型零售金融交易平台,它能够以很低的延迟产生大量交易.这个系统是建立在JV ...

  5. dubbo源码阅读之负载均衡

    负载均衡 在之前集群的文章中,我们分析了通过监听注册中心可以获取到多个服务提供者,并创建多个Invoker,然后通过集群类如FailoverClusterInvoker将多个Invoker封装在一起, ...

  6. python day 8: re模块补充,导入模块,hashlib模块,字符串格式化,模块知识拾遗,requests模块初识

    目录 python day 8 1. re模块补充 2. import模块导入 3. os模块 4. hashlib模块 5. 字符串格式:百分号法与format方法 6. 模块知识拾遗 7. req ...

  7. UnicodeDecodeError: 'utf-8' codec can't decode byte..问题

    解决UnicodeDecodeError: 'utf-8' codec can't decode byte..问题 问题描述: 问题分析: 该情况是由于出现了无法进行转换的 二进制数据 造成的,可以写 ...

  8. Go path/filepath文件路径操作

    本文:https://books.studygolang.com/The-Golang-Standard-Library-by-Example/chapter06/06.2.html path:htt ...

  9. Http状态吗504问题复盘

    原因分析:504错误一般与nginx.conf配置有关,主要参数有:fastcgi_connect_timeout.fastcgi_send_timeout.fastcgi_read_timeout. ...

  10. MySQL 5.7主从复制实战篇

    MySQL 5.7主从复制实战篇 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.安装MySQL数据库并启动 1>.在MySQL官方下载相应的安装包(https://dev ...