描述

给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

说明:每次只能向下或者向右移动一步。

示例:

输入:
[
  [1,3,1],
[1,5,1],
[4,2,1]
]
输出: 7
解释: 因为路径 1→3→1→1→1 的总和最小。

解析

由于我们的目的是从左上角到右下角,最小路径和是多少,那我们就定义 dp[i] [j]的含义为:当从左上角走到(i, j) 这个位置时,最下的路径和是 dp[i] [j]。那么,dp[m-1] [n-1] 就是我们要的答案了。

想象以下,要怎么样才能到达 (i, j) 这个位置?由于可以向下走或者向右走,所以有两种方式到达

一种是从 (i-1, j) 这个位置走一步到达

一种是从(i, j - 1) 这个位置走一步到达

不过这次不是计算所有可能路径,而是计算哪一个路径和是最小的,那么我们要从这两种方式中,选择一种,使得dp[i] [j] 的值是最小的,显然有

dp[i] [j] = min(dp[i-1][j],dp[i][j-1]) + arr[i][j];// arr[i][j] 表示网格中的值

初始值:

当 dp[i] [j] 中,如果 i 或者 j 有一个是 0,那么还能使用关系式吗?答是不能的。

因为这个时候把 i - 1 或者 j - 1,就变成负数了,数组就会出问题了,所以我们的初始值是计算出所有的 dp[0] [0….n-1] 和所有的 dp[0….m-1] [0]。这个还是非常容易计算的,相当于图中的最上面一行和左边一列。因此初始值如下:

dp[0] [j] = arr[0] [j] + dp[0] [j - 1]; // 相当于第一行,只能一直往左走

dp[i] [0] = arr[i] [0] + dp[i - 1] [0]; // 相当于第一列,只能一直往下走

代码

public int minPathSum(int[][] grid) {
if (null == grid || grid.length <= 0) {
return 0;
}
int[][] dp = new int[grid.length][grid[0].length];
dp[0][0] = grid[0][0];
for (int i = 1; i < dp.length; i++) {
dp[i][0] = dp[i - 1][0] + grid[i][0];
}
for (int i = 1; i < dp[0].length; i++) {
dp[0][i] = dp[0][i - 1] + grid[0][i];
}
for (int ii = 1; ii < dp.length; ii++) {
for (int kk = 1; kk < dp[0].length; kk++) {
dp[ii][kk] = Math.min(dp[ii - 1][kk], dp[ii][kk - 1]) + grid[ii][kk];
}
}
return dp[grid.length - 1][grid[0].length - 1];
}

[LeetCode] 64. 最小路径和 ☆☆☆(动态规划)的更多相关文章

  1. leetcode 64. 最小路径和 动态规划系列

    目录 1. leetcode 64. 最小路径和 1.1. 暴力 1.2. 二维动态规划 2. 完整代码及执行结果 2.1. 执行结果 1. leetcode 64. 最小路径和 给定一个包含非负整数 ...

  2. LeetCode 64. 最小路径和(Minimum Path Sum) 20

    64. 最小路径和 64. Minimum Path Sum 题目描述 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明: 每次只能向下或 ...

  3. Java实现 LeetCode 64 最小路径和

    64. 最小路径和 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 示例: 输入: [ [1,3,1], ...

  4. LeetCode 64最小路径和

    题目 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 示例: 输入: [   [1,3,1], [1,5 ...

  5. Leetcode——64. 最小路径和

    题目描述:题目链接 同样对于这个问题,我们可以考虑用动态规划来解决. 解决动态规划常见的三个步骤: 1:问题的归纳.对于 i,j 位置上的最短路径可以用d[ i ][ j ]表示. 2:归纳递推式:d ...

  6. leetcode 64. 最小路径和Minimum Path Sum

    很典型的动态规划题目 C++解法一:空间复杂度n2 class Solution { public: int minPathSum(vector<vector<int>>&am ...

  7. [LeetCode]64. 最小路径和(DP)

    题目 给定一个无序的整数数组,找到其中最长上升子序列的长度. 示例: 输入: [10,9,2,5,3,7,101,18] 输出: 4 解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4 ...

  8. Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum)

    Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum) 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. ...

  9. Leetcode题目64.最小路径和(动态规划-中等)

    题目描述: 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 示例: 输入: [ [1,3,1], [1, ...

随机推荐

  1. Docker打包部署前端项目与负载均衡

    设置淘宝镜像 npm install -g cnpm --registry=https://registry.npm.taobao.org //在home/fn1 home/fn2放入项目和nginx ...

  2. bind 0.0.0.0的作用是什么呢?

    背景描述: 今天在看redis的内容,看到同事在配置文件中将bind配置为0.0.0.0进行监听,不明白什么意思就查询了下,在此记录下. 解释: 0.0.0.0在服务器的环境中,指的就是服务器上所有的 ...

  3. SpringBoot @Autowired中注入静态方法或者静态变量

    注:用static去定义一个注入的方法或者配置文件值变量,编译时不会有任何异常,运行时会报空指针. Spring官方不推荐此种方法. 原理: https://www.cnblogs.com/chenf ...

  4. 数据库事务和spring事务的区别

    数据库事务和spring事务 本质上其实是同一个概念,spring的事务是对数据库的事务的封装,最后本质的实现还是在数据库,假如数据库不支持事务的话,spring的事务是没有作用的.数据库的事务说简单 ...

  5. ios label根据内容自适应高度

    label自适应高度,想必大家也都很熟悉怎么去做,上代码: UILabel *label3 = [[UILabel alloc]initWithFrame:CGRectMake(150, 50, 15 ...

  6. Xcode UI界面调试神器-injectionIII

    App Store搜索injectionIII下载即可,免费的哟. 打开injectionIII,运行即可. - (BOOL)application:(UIApplication *)applicat ...

  7. [转]git登录账号密码错误remote: Incorrect username or password

    链接地址:https://baijiahao.baidu.com/s?id=1622020216177100162&wfr=spider&for=pc

  8. js 打印条形码

    相应的文件大家去github上下载吧 https://github.com/lindell/JsBarcode <!DOCTYPE html> <html> <head& ...

  9. LeetCode 22. 括号生成(Generate Parentheses)

    22. 括号生成 22. Generate Parentheses 题目描述 给出 n 代表生成括号的对数,请你写出一个函数,使其能够生成所有可能的并且有效的括号组合. 例如,给出 n = 3,生成结 ...

  10. [转帖]Linux教程(21)-Linux条件循环语句

    Linux教程(21)-Linux条件循环语句 2018-08-24 16:49:03 钱婷婷 阅读数 60更多 分类专栏: Linux教程与操作 Linux教程与使用   版权声明:本文为博主原创文 ...