[LeetCode] 64. 最小路径和 ☆☆☆(动态规划)
描述
给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
说明:每次只能向下或者向右移动一步。
示例:
输入:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
输出: 7
解释: 因为路径 1→3→1→1→1 的总和最小。
解析
由于我们的目的是从左上角到右下角,最小路径和是多少,那我们就定义 dp[i] [j]的含义为:当从左上角走到(i, j) 这个位置时,最下的路径和是 dp[i] [j]。那么,dp[m-1] [n-1] 就是我们要的答案了。
想象以下,要怎么样才能到达 (i, j) 这个位置?由于可以向下走或者向右走,所以有两种方式到达
一种是从 (i-1, j) 这个位置走一步到达
一种是从(i, j - 1) 这个位置走一步到达
不过这次不是计算所有可能路径,而是计算哪一个路径和是最小的,那么我们要从这两种方式中,选择一种,使得dp[i] [j] 的值是最小的,显然有
dp[i] [j] = min(dp[i-1][j],dp[i][j-1]) + arr[i][j];// arr[i][j] 表示网格中的值
初始值:
当 dp[i] [j] 中,如果 i 或者 j 有一个是 0,那么还能使用关系式吗?答是不能的。
因为这个时候把 i - 1 或者 j - 1,就变成负数了,数组就会出问题了,所以我们的初始值是计算出所有的 dp[0] [0….n-1] 和所有的 dp[0….m-1] [0]。这个还是非常容易计算的,相当于图中的最上面一行和左边一列。因此初始值如下:
dp[0] [j] = arr[0] [j] + dp[0] [j - 1]; // 相当于第一行,只能一直往左走
dp[i] [0] = arr[i] [0] + dp[i - 1] [0]; // 相当于第一列,只能一直往下走
代码
public int minPathSum(int[][] grid) {
if (null == grid || grid.length <= 0) {
return 0;
}
int[][] dp = new int[grid.length][grid[0].length];
dp[0][0] = grid[0][0];
for (int i = 1; i < dp.length; i++) {
dp[i][0] = dp[i - 1][0] + grid[i][0];
}
for (int i = 1; i < dp[0].length; i++) {
dp[0][i] = dp[0][i - 1] + grid[0][i];
}
for (int ii = 1; ii < dp.length; ii++) {
for (int kk = 1; kk < dp[0].length; kk++) {
dp[ii][kk] = Math.min(dp[ii - 1][kk], dp[ii][kk - 1]) + grid[ii][kk];
}
}
return dp[grid.length - 1][grid[0].length - 1];
}
[LeetCode] 64. 最小路径和 ☆☆☆(动态规划)的更多相关文章
- leetcode 64. 最小路径和 动态规划系列
目录 1. leetcode 64. 最小路径和 1.1. 暴力 1.2. 二维动态规划 2. 完整代码及执行结果 2.1. 执行结果 1. leetcode 64. 最小路径和 给定一个包含非负整数 ...
- LeetCode 64. 最小路径和(Minimum Path Sum) 20
64. 最小路径和 64. Minimum Path Sum 题目描述 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明: 每次只能向下或 ...
- Java实现 LeetCode 64 最小路径和
64. 最小路径和 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 示例: 输入: [ [1,3,1], ...
- LeetCode 64最小路径和
题目 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 示例: 输入: [ [1,3,1], [1,5 ...
- Leetcode——64. 最小路径和
题目描述:题目链接 同样对于这个问题,我们可以考虑用动态规划来解决. 解决动态规划常见的三个步骤: 1:问题的归纳.对于 i,j 位置上的最短路径可以用d[ i ][ j ]表示. 2:归纳递推式:d ...
- leetcode 64. 最小路径和Minimum Path Sum
很典型的动态规划题目 C++解法一:空间复杂度n2 class Solution { public: int minPathSum(vector<vector<int>>&am ...
- [LeetCode]64. 最小路径和(DP)
题目 给定一个无序的整数数组,找到其中最长上升子序列的长度. 示例: 输入: [10,9,2,5,3,7,101,18] 输出: 4 解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4 ...
- Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum)
Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum) 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. ...
- Leetcode题目64.最小路径和(动态规划-中等)
题目描述: 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 示例: 输入: [ [1,3,1], [1, ...
随机推荐
- Docker打包部署前端项目与负载均衡
设置淘宝镜像 npm install -g cnpm --registry=https://registry.npm.taobao.org //在home/fn1 home/fn2放入项目和nginx ...
- bind 0.0.0.0的作用是什么呢?
背景描述: 今天在看redis的内容,看到同事在配置文件中将bind配置为0.0.0.0进行监听,不明白什么意思就查询了下,在此记录下. 解释: 0.0.0.0在服务器的环境中,指的就是服务器上所有的 ...
- SpringBoot @Autowired中注入静态方法或者静态变量
注:用static去定义一个注入的方法或者配置文件值变量,编译时不会有任何异常,运行时会报空指针. Spring官方不推荐此种方法. 原理: https://www.cnblogs.com/chenf ...
- 数据库事务和spring事务的区别
数据库事务和spring事务 本质上其实是同一个概念,spring的事务是对数据库的事务的封装,最后本质的实现还是在数据库,假如数据库不支持事务的话,spring的事务是没有作用的.数据库的事务说简单 ...
- ios label根据内容自适应高度
label自适应高度,想必大家也都很熟悉怎么去做,上代码: UILabel *label3 = [[UILabel alloc]initWithFrame:CGRectMake(150, 50, 15 ...
- Xcode UI界面调试神器-injectionIII
App Store搜索injectionIII下载即可,免费的哟. 打开injectionIII,运行即可. - (BOOL)application:(UIApplication *)applicat ...
- [转]git登录账号密码错误remote: Incorrect username or password
链接地址:https://baijiahao.baidu.com/s?id=1622020216177100162&wfr=spider&for=pc
- js 打印条形码
相应的文件大家去github上下载吧 https://github.com/lindell/JsBarcode <!DOCTYPE html> <html> <head& ...
- LeetCode 22. 括号生成(Generate Parentheses)
22. 括号生成 22. Generate Parentheses 题目描述 给出 n 代表生成括号的对数,请你写出一个函数,使其能够生成所有可能的并且有效的括号组合. 例如,给出 n = 3,生成结 ...
- [转帖]Linux教程(21)-Linux条件循环语句
Linux教程(21)-Linux条件循环语句 2018-08-24 16:49:03 钱婷婷 阅读数 60更多 分类专栏: Linux教程与操作 Linux教程与使用 版权声明:本文为博主原创文 ...