描述

给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

说明:每次只能向下或者向右移动一步。

示例:

输入:
[
  [1,3,1],
[1,5,1],
[4,2,1]
]
输出: 7
解释: 因为路径 1→3→1→1→1 的总和最小。

解析

由于我们的目的是从左上角到右下角,最小路径和是多少,那我们就定义 dp[i] [j]的含义为:当从左上角走到(i, j) 这个位置时,最下的路径和是 dp[i] [j]。那么,dp[m-1] [n-1] 就是我们要的答案了。

想象以下,要怎么样才能到达 (i, j) 这个位置?由于可以向下走或者向右走,所以有两种方式到达

一种是从 (i-1, j) 这个位置走一步到达

一种是从(i, j - 1) 这个位置走一步到达

不过这次不是计算所有可能路径,而是计算哪一个路径和是最小的,那么我们要从这两种方式中,选择一种,使得dp[i] [j] 的值是最小的,显然有

dp[i] [j] = min(dp[i-1][j],dp[i][j-1]) + arr[i][j];// arr[i][j] 表示网格中的值

初始值:

当 dp[i] [j] 中,如果 i 或者 j 有一个是 0,那么还能使用关系式吗?答是不能的。

因为这个时候把 i - 1 或者 j - 1,就变成负数了,数组就会出问题了,所以我们的初始值是计算出所有的 dp[0] [0….n-1] 和所有的 dp[0….m-1] [0]。这个还是非常容易计算的,相当于图中的最上面一行和左边一列。因此初始值如下:

dp[0] [j] = arr[0] [j] + dp[0] [j - 1]; // 相当于第一行,只能一直往左走

dp[i] [0] = arr[i] [0] + dp[i - 1] [0]; // 相当于第一列,只能一直往下走

代码

public int minPathSum(int[][] grid) {
if (null == grid || grid.length <= 0) {
return 0;
}
int[][] dp = new int[grid.length][grid[0].length];
dp[0][0] = grid[0][0];
for (int i = 1; i < dp.length; i++) {
dp[i][0] = dp[i - 1][0] + grid[i][0];
}
for (int i = 1; i < dp[0].length; i++) {
dp[0][i] = dp[0][i - 1] + grid[0][i];
}
for (int ii = 1; ii < dp.length; ii++) {
for (int kk = 1; kk < dp[0].length; kk++) {
dp[ii][kk] = Math.min(dp[ii - 1][kk], dp[ii][kk - 1]) + grid[ii][kk];
}
}
return dp[grid.length - 1][grid[0].length - 1];
}

[LeetCode] 64. 最小路径和 ☆☆☆(动态规划)的更多相关文章

  1. leetcode 64. 最小路径和 动态规划系列

    目录 1. leetcode 64. 最小路径和 1.1. 暴力 1.2. 二维动态规划 2. 完整代码及执行结果 2.1. 执行结果 1. leetcode 64. 最小路径和 给定一个包含非负整数 ...

  2. LeetCode 64. 最小路径和(Minimum Path Sum) 20

    64. 最小路径和 64. Minimum Path Sum 题目描述 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明: 每次只能向下或 ...

  3. Java实现 LeetCode 64 最小路径和

    64. 最小路径和 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 示例: 输入: [ [1,3,1], ...

  4. LeetCode 64最小路径和

    题目 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 示例: 输入: [   [1,3,1], [1,5 ...

  5. Leetcode——64. 最小路径和

    题目描述:题目链接 同样对于这个问题,我们可以考虑用动态规划来解决. 解决动态规划常见的三个步骤: 1:问题的归纳.对于 i,j 位置上的最短路径可以用d[ i ][ j ]表示. 2:归纳递推式:d ...

  6. leetcode 64. 最小路径和Minimum Path Sum

    很典型的动态规划题目 C++解法一:空间复杂度n2 class Solution { public: int minPathSum(vector<vector<int>>&am ...

  7. [LeetCode]64. 最小路径和(DP)

    题目 给定一个无序的整数数组,找到其中最长上升子序列的长度. 示例: 输入: [10,9,2,5,3,7,101,18] 输出: 4 解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4 ...

  8. Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum)

    Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum) 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. ...

  9. Leetcode题目64.最小路径和(动态规划-中等)

    题目描述: 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 示例: 输入: [ [1,3,1], [1, ...

随机推荐

  1. Python模块安装方法

    安装Python模块 电子邮件 distutils-sig @ python .组织 作为一个受欢迎的开源开发项目,Python具有活跃的贡献者和用户支持社区,并且根据开放源代码许可条款,其软件可供其 ...

  2. ingress nginx https配置

    3.https配置第一步:制作自签证书 [root@master demo]# openssl genrsa -out tls.key 2048 [root@master demo]# openssl ...

  3. Android -------- BouncingJellyView 果冻视图(阻尼效果)

    分享一个不错的效果,分享给大家 BouncingJellyView 果冻视图,就像果冻一样伸缩弹跳,也叫阻尼效果.这个效果在MIUI上面到处都可以看到. 效果图: 使用 项目更目录bulid.grad ...

  4. MacOS Laravel 安装教程

    一.到官网选择 Laravel 版本 根据个人的喜好选择安装的版本,我选择的是 5.8 https://laravel.com/docs/5.8/installation 以下是 Laravel 5. ...

  5. Java之第一个Java程序

    编写第一个Java程序 打开文本编辑器,输入以下代码 public class Hello { public static void main(String[] args) { System.out. ...

  6. Redis哨兵(Sentinel)模式

    Redis哨兵(Sentinel)模式   主从切换技术的方法是:当主服务器宕机后,需要手动把一台从服务器切换为主服务器,这就需要人工干预,费事费力,还会造成一段时间内服务不可用.这不是一种推荐的方式 ...

  7. zabbix解决中文乱码

    解决中文乱码 yum install -y wqy-microhei-fonts #解决方法 中文乱码 \cp /usr/share/fonts/wqy-microhei/wqy-microhei.t ...

  8. WARNING:Your password has expired --linux 用户密码过期

    今天在ssh 提示  WARNING:Your password has expired 设置用户到期时间 chage -M 36000 用户名 chage -l 用户名 #查看用户信息

  9. Maven 相关知识点解释

    在PC端上面关于Maven的安装等情况我这里就不再复述了,不懂的请自行百度谷歌. 今天聊一下Maven 里面的结构,及相关依赖解释. groupId,artfactId,version,type,cl ...

  10. IDEA一个工程如何启动多次