Given two words word1 and word2, find the minimum number of steps required to make word1 and word2 the same, where in each step you can delete one character in either string.

Example 1:

Input: "sea", "eat"
Output: 2
Explanation: You need one step to make "sea" to "ea" and another step to make "eat" to "ea".

Note:

  1. The length of given words won't exceed 500.
  2. Characters in given words can only be lower-case letters.

求出最长相同子序列Longest Common Subsequence,然后两个单词长度和减去2倍的相同子序列长度就是答案。

解法1: 递归, 如果[0, i], [0, j]最后一个字符相同,则比较[0, i-1], [0, j-1]的最后一个字符,若不相同,则删去第i个或第j个字符后,返回长度更长的子序列。TLE

解法2:动态规划dp,dp[i][j]表示word1的前i个字符和word2的前j个字符组成的两个单词的最长公共子序列的长度。如果当前的两个字符相等,那么dp[i][j] = dp[i-1][j-1] + 1 , 假设[0,i],[0,j]的最后一个字符匹配,则LCS的长度取决于第i-1和j-1个字符;如果不匹配,则需要进行错位比较,也就是说,LCS的长度取决于[i-1]或[j-1](取较长的一个)

Java1:

public class Solution {
public int minDistance(String s1, String s2) {
return s1.length() + s2.length() - 2 * lcs(s1, s2, s1.length(), s2.length());
}
public int lcs(String s1, String s2, int m, int n) {
if (m == 0 || n == 0)
return 0;
if (s1.charAt(m - 1) == s2.charAt(n - 1))
return 1 + lcs(s1, s2, m - 1, n - 1);
else
return Math.max(lcs(s1, s2, m, n - 1), lcs(s1, s2, m - 1, n));
}
}

Java2:

class Solution {
public int minDistance(String word1, String word2) {
int dp[][]=new int[word1.length()+1][word2.length()+1];
for(int i=0;i<word1.length()+1;++i){
for(int j=0;j<word2.length()+1;++j){
if(i==0||j==0)
continue;
if(word1.charAt(i-1)==word2.charAt(j-1))
dp[i][j]=dp[i-1][j-1]+1;
else
dp[i][j]=Math.max(dp[i-1][j],dp[i][j-1]);
}
}
return word1.length()+word2.length()-2*dp[word1.length()][word2.length()];
}
}

Java:

class Solution {
public int minDistance(String word1, String word2){
int dp[][]=new int[word1.length()+1][word2.length()+1];
for(int i=0;i<=word1.length();++i){
for(int j=0;j<=word2.length();++j){
if(i==0||j==0)
dp[i][j]=i+j;
else if(word1.charAt(i-1)==word2.charAt(j-1))
dp[i][j]=dp[i-1][j-1];
else
dp[i][j]=Math.min(dp[i-1][j],dp[i][j-1])+1;
}
}
return dp[word1.length()][word2.length()];
}
}  

Python1:

class Solution(object):
def minDistance(self, word1, word2):
"""
:type word1: str
:type word2: str
:rtype: int
"""
return len(word1) + len(word2) - 2 * self.lcs(word1, word2) def lcs(self, word1, word2):
len1, len2 = len(word1), len(word2)
dp = [[0] * (len2 + 1) for x in range(len1 + 1)]
for x in range(len1):
for y in range(len2):
dp[x + 1][y + 1] = max(dp[x][y + 1], dp[x + 1][y])
if word1[x] == word2[y]:
dp[x + 1][y + 1] = dp[x][y] + 1
return dp[len1][len2]  

Python2:

class Solution(object):
def minDistance(self, word1, word2):
"""
:type word1: str
:type word2: str
:rtype: int
"""
m, n = len(word1), len(word2)
dp = [[0] * (n+1) for _ in xrange(2)]
for i in xrange(m):
for j in xrange(n):
dp[(i+1)%2][j+1] = max(dp[i%2][j+1], \
dp[(i+1)%2][j], \
dp[i%2][j] + (word1[i] == word2[j]))
return m + n - 2*dp[m%2][n]

C++:

class Solution {
public:
int minDistance(string word1, string word2) {
int n1 = word1.size(), n2 = word2.size();
vector<vector<int>> dp(n1 + 1, vector<int>(n2 + 1, 0));
for (int i = 1; i <= n1; ++i) {
for (int j = 1; j <= n2; ++j) {
if (word1[i - 1] == word2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
}
}
}
return n1 + n2 - 2 * dp[n1][n2];
}
};

C++:

class Solution {
public:
int minDistance(string word1, string word2) {
int n1 = word1.size(), n2 = word2.size();
vector<vector<int>> dp(n1 + 1, vector<int>(n2 + 1, 0));
for (int i = 0; i <= n1; ++i) dp[i][0] = i;
for (int j = 0; j <= n2; ++j) dp[0][j] = j;
for (int i = 1; i <= n1; ++i) {
for (int j = 1; j <= n2; ++j) {
if (word1[i - 1] == word2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1];
} else {
dp[i][j] = 1 + min(dp[i - 1][j], dp[i][j - 1]);
}
}
}
return dp[n1][n2];
}
};

  

 

类似题目:

[LeetCode] 712. Minimum ASCII Delete Sum for Two Strings 两个字符串的最小ASCII删除和

All LeetCode Questions List 题目汇总

[LeetCode] 583. Delete Operation for Two Strings 两个字符串的删除操作的更多相关文章

  1. [LeetCode] Delete Operation for Two Strings 两个字符串的删除操作

    Given two words word1 and word2, find the minimum number of steps required to make word1 and word2 t ...

  2. LeetCode 583 Delete Operation for Two Strings 删除两个字符串的不同部分使两个字符串相同,求删除的步数

    Given two words word1 and word2, find the minimum number of steps required to make word1 and word2 t ...

  3. [LeetCode] 712. Minimum ASCII Delete Sum for Two Strings 两个字符串的最小ASCII删除和

    Given two strings s1, s2, find the lowest ASCII sum of deleted characters to make two strings equal. ...

  4. 【Leetcode】583. Delete Operation for Two Strings

    583. Delete Operation for Two Strings Given two words word1 and word2, find the minimum number of st ...

  5. Java实现 LeetCode 583 两个字符串的删除操作(求最长公共子序列问题)

    583. 两个字符串的删除操作 给定两个单词 word1 和 word2,找到使得 word1 和 word2 相同所需的最小步数,每步可以删除任意一个字符串中的一个字符. 示例: 输入: " ...

  6. Leetcode 583.两个字符串的删除操作

    两个字符串的删除操作 给定两个单词 word1 和 word2,找到使得 word1 和 word2 相同所需的最小步数,每步可以删除任意一个字符串中的一个字符. 示例 1: 输入: "se ...

  7. [LeetCode] Minimum ASCII Delete Sum for Two Strings 两个字符串的最小ASCII删除和

    Given two strings s1, s2, find the lowest ASCII sum of deleted characters to make two strings equal. ...

  8. LC 583. Delete Operation for Two Strings

    Given two words word1 and word2, find the minimum number of steps required to make word1 and word2 t ...

  9. 【LeetCode】583. Delete Operation for Two Strings 解题报告(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 日期 题目地址:https://leetcode.c ...

随机推荐

  1. TCN时间卷积网络——解决LSTM的并发问题

    TCN是指时间卷积网络,一种新型的可以用来解决时间序列预测的算法.在这一两年中已有多篇论文提出,但是普遍认为下篇论文是TCN的开端. 论文名称: An Empirical Evaluation of ...

  2. tcp中设置连接超时

    直接上代码: 设置连接超时 //首先改成非阻塞套接字 unsigned ; int rm=ioctl(sConnect,FIONBIO,(unsigned long*)&ul); ) { pr ...

  3. git添加doc文件维护

    原文地址:https://www.cnblogs.com/yezuhui/p/6853271.html 说明: git 一般只能对纯文本文件进行版本控制,但是如果有其他中间转化软件的协助,就可以对任意 ...

  4. postgres高可用学习篇三:haproxy+keepalived实现postgres负载均衡

    环境: CentOS Linux release 7.6.1810 (Core) 内核版本:3.10.0-957.10.1.el7.x86_64 node1:192.168.216.130 node2 ...

  5. LeetCode 743. Network Delay Time

    原题链接在这里:https://leetcode.com/problems/network-delay-time/ 题目: There are N network nodes, labelled 1  ...

  6. Jupyter notebook 自动补全

    Jupyter notebook 自动补全   Jupyter notebook使用默认的自动补全是关掉的.要打开自动补全,需修改默认配置.  ipython profile create 以上命令会 ...

  7. WinDbg常用命令系列---|(进程状态)

    |(进程状态) 简介 (|) 命令显示指定进程的状态或当前正在调试你的所有进程. 使用形式 | Process 参数 Process 指定要显示的进程. 如果省略此参数,将显示所有正在调试的进程. 支 ...

  8. 关于Windows系统里的事后调试

    我一直在想,应用程序抛出未处理的异常和附加到进程的调试器之间会发生什么.显然这些信息就在我眼皮底下,但我是瞎子.Windows调试器关于事后调试的文档包含了您想要知道的所有详细信息. 最常见的应用程序 ...

  9. [USACO12MAR]花盆 二分 单调队列

    [USACO12MAR]花盆 二分 单调队列 存在一个长度为\(x\)的区间\([l,r]\),使得区间中最大值与最小值差至少为\(w\),求这个最小的\(x\) \(n\le 100000\),\( ...

  10. 【NOIP2014】真题回顾

    题目链接 生活大爆炸版石头剪刀布 就是个模拟,不说了 联合权值 枚举每个点,统计它任意两个儿子的联合权值,统计的时候维护sum和max就行了 飞扬的小鸟 比较好的DP题,不难想到用dp[i][j]表示 ...