好神啊 ~

打表程序:

#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 140000000
#define ll long long
#define mod 998244353
#define setIO(s) freopen(s".in","r",stdin) , freopen(s".out","w",stdout)
using namespace std;
int f[2][N];
int cnt[N];
ll qpow(ll x,ll y) {
ll ans=1;
while(y) {
if(y&1) {
ans=ans*x%mod;
}
x=x*x%mod;
y>>=1;
}
return ans;
}
int main() {
// setIO("input");
for(int n=1;n<=30;n+=2) {
int i,j,k,d,t,pos;
ll ans=0,fac=1;
--n;
f[0][0]=1;
for(d=i=1;i<=n;++i,d^=1) {
memset(f[d],0,sizeof(int)*(1<<i));
for(j=0;j<(1<<(i-1));++j) {
f[d][j<<1]=(f[d][j<<1]+f[d^1][j])%mod,pos=-1;
for(k=i-1;k>=0;--k) {
t=((j>>k)<<(k+1))|(1<<k)|(j&((1<<k)-1));
if(j&(1<<k)) pos=k; // 这里有一
if(pos>=0) t^=(1<<(pos+1));
f[d][t]=(f[d][t]+f[d^1][j])%mod;
}
}
}
for(i=1;i<(1<<n);++i) {
cnt[i]=cnt[i-(i&-i)]+1;
}
for(i=0;i<(1<<n);++i) {
ans=(ans+1ll*f[n&1][i]*(cnt[i]+1))%mod;
}
for(i=1;i<=n+1;++i) {
fac=fac*i%mod;
}
printf("%lld\n",ans*qpow(fac,mod-2)%mod);
}
return 0;
}

  

表:

#include <cstdio>
int ans[40]={
1,
499122178,
2,
915057326,
540715694,
946945688,
422867403,
451091574,
317868537,
200489273,
976705134,
705376344,
662845575,
331522185,
228644314,
262819964,
686801362,
495111839,
947040129,
414835038,
696340671,
749077581,
301075008,
314644758,
102117126,
819818153,
273498600,
267588741,
};
int main() {
int n;
scanf("%d",&n);
printf("%d\n",ans[n-1]);
return 0;
}

  

BZOJ 5161: 最长上升子序列 状压dp+查分的更多相关文章

  1. BZOJ.3591.最长上升子序列(状压DP)

    BZOJ 题意:给出\(1\sim n\)的一个排列的一个最长上升子序列,求原排列可能的种类数. \(n\leq 15\). \(n\)很小,参照HDU 4352这道题,我们直接把求\(LIS\)时的 ...

  2. 【bzoj5161】最长上升子序列 状压dp+打表

    题目描述 现在有一个长度为n的随机排列,求它的最长上升子序列长度的期望. 为了避免精度误差,你只需要输出答案模998244353的余数. 输入 输入只包含一个正整数n.N<=28 输出 输出只包 ...

  3. bzoj5161 最长上升子序列 状压DP(DP 套 DP) + 打表

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=5161 题解 回顾一下以前用二分求 LIS 的方法:令 \(f[i]\) 表示长度为 \(i\) ...

  4. [BZOJ 1072] [SCOI2007] 排列perm 【状压DP】

    题目链接:BZOJ 1072 这道题使用 C++ STL 的 next_permutation() 函数直接暴力就可以AC .(使用 Set 判断是否重复) 代码如下: #include <io ...

  5. BZOJ 3195 [Jxoi2012]奇怪的道路 | 状压DP

    传送门 BZOJ 3195 题解 这是一道画风正常的状压DP题. 可以想到,\(dp[i][j][k]\)表示到第\(i\)个点.已经连了\(j\)条边,当前\([i - K, i]\)区间内的点的度 ...

  6. BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3336  Solved: 1936[Submit][ ...

  7. BZOJ 3446: [Usaco2014 Feb]Cow Decathlon( 状压dp )

    水状压dp. dp(x, s) = max{ dp( x - 1, s - {h} ) } + 奖励(假如拿到的) (h∈s). 时间复杂度O(n * 2^n) ------------------- ...

  8. BZOJ 2734 [HNOI2012]集合选数 (状压DP、时间复杂度分析)

    题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2734 题解 嗯早就想写的题,昨天因为某些不可告人的原因(大雾)把这题写了,今天再来写题解 ...

  9. BZOJ.4160.[NEERC2009]Exclusive Access 2(状压DP Dilworth定理)

    BZOJ DAG中,根据\(Dilworth\)定理,有 \(最长反链=最小链覆盖\),也有 \(最长链=最小反链划分数-1\)(这个是指最短的最长链?并不是很确定=-=),即把所有点划分成最少的集合 ...

随机推荐

  1. docker下oracle的awr报告下载

  2. Vue.js 源码分析(十一) 基础篇 过滤器 filters属性详解

    Vue.js 允许你自定义过滤器,可被用于一些常见的文本格式化.过滤器可以用在两个地方:双花括号插值和 v-bind 表达式 (后者从 2.1.0+ 开始支持).过滤器应该被添加在 JavaScrip ...

  3. sql server获取格式化的当前日期

    在SQL Server中获取格式化成yyyy-MM-dd的当前日期: ), ); -- 2019-06-17 首先我们知道getdate()函数是用来获取当前日期的,它返回的类型是datetime类型 ...

  4. 【spring boot】【idea】100.idea新建一个spring boot项目

    1.idea新创建一个项目 2.setting进入,选择自己的Maven 3.简单补充一下pom.xml <?xml version="1.0" encoding=" ...

  5. C# 与 Java 的一些差异

    如果你是 Java 开发人员,则可以在 Xamarin 平台上充分利用你的技能和现有代码,同时获得 C# 的代码重用优势.你会发现 C# 语法与 Java 语法非常相似,这两种语言提供非常类似的功能. ...

  6. 记WinForm中WebBrowser相关的俩个问题

    问题一:如何不让WebBrowser中弹出“安全警告” 当链接https网址时,IE会自动弹出上图中的窗口. 关闭窗口的具体思路如下: 使用WebBrowser加载中/加载完毕后触发的事件处理程序,在 ...

  7. NetCoreApi框架搭建三、JWT授权验证)

    1.首先还是粘贴大神的链接 虽然说大神的博客已经讲得很详细了,但是此处还是自己动手好点. 首先配置Startup Swagger的验证 2.新建一个项目存放tokenmodel和生成token并且存入 ...

  8. 理解AMD ,CMD,CommonJS规范

    https://blog.csdn.net/xcymorningsun/article/details/52709608 理解AMD ,CMD,CommonJS规范 2016年09月30日 10:33 ...

  9. iOS批量添加SDK自动打包GUI工具

    背景 1.之前在给游戏开发商做SDK接入技术支持的时候,很多cp对iOS开发技术并不是很了解,对接SDK和打包都很迷糊,虽然我们根据他们的开发环境输出了不同的插件解决方案,这一步已经把接入SDK的复杂 ...

  10. 个人项目-wc

    个人项目-WC   (C语言) 一.Github地址:https://github.com/Lin-J-F/WC 二.PSP表格 PSP2.1 Personal Software Process St ...