https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1242

基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题
 收藏
 关注
斐波那契数列的定义如下:
 
F(0) = 0
F(1) = 1
F(n) = F(n - 1) + F(n - 2) (n >= 2)
 
(1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ...)
给出n,求F(n),由于结果很大,输出F(n) % 1000000009的结果即可。
 
Input
输入1个数n(1 <= n <= 10^18)。
Output
输出F(n) % 1000000009的结果。
Input示例
11
Output示例
89
 #include <cstdio>

 const int mod();
#define LL long long
inline void read(LL &x)
{
x=; register char ch=getchar();
for(; ch>''||ch<''; ) ch=getchar();
for(; ch>=''&&ch<=''; ch=getchar()) x=x*+ch-'';
}
LL n; struct Matrix {
LL e[][];
Matrix operator * (const Matrix x) const
{
Matrix tmp;
for(int i=; i<; ++i)
for(int j=; j<; ++j)
{
tmp.e[i][j]=;
for(int k=; k<; ++k)
tmp.e[i][j]+=e[i][k]*x.e[k][j],tmp.e[i][j]%=mod;
}
return tmp;
}
}ans,base; int Presist()
{
read(n);
ans.e[][]=ans.e[][]=;
base.e[][]=base.e[][]=base.e[][]=;
for(; n; n>>=, base=base*base)
if(n&) ans=ans*base;
printf("%lld",ans.e[][]);
return ;
} int Aptal=Presist();
int main(){;}

51Nod——T 1242 斐波那契数列的第N项的更多相关文章

  1. 1242 斐波那契数列的第N项

    1242 斐波那契数列的第N项  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题   斐波那契数列的定义如下:   F(0) = 0 F(1) = 1 F(n) = F( ...

  2. 51 Nod 1242 斐波那契数列的第N项(矩阵快速幂模板题)

    1242 斐波那契数列的第N项  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 斐波那契数列的定义如下: F(0) = 0 F(1) = 1 F(n) ...

  3. (矩阵快速幂)51NOD 1242斐波那契数列的第N项

    斐波那契数列的定义如下:   F(0) = 0 F(1) = 1 F(n) = F(n - 1) + F(n - 2) (n >= 2)   (1, 1, 2, 3, 5, 8, 13, 21, ...

  4. 51nod 1242 斐波那契数列的第N项

    之前一直没敢做矩阵一类的题目 其实还好吧 推荐看一下 : http://www.cnblogs.com/SYCstudio/p/7211050.html 但是后面的斐波那契 推导不是很懂  前面讲的挺 ...

  5. 51Nod 1242 斐波那契数列的第N项(矩阵快速幂)

    #include <iostream> #include <algorithm> using namespace std; typedef long long LL; ; ; ...

  6. 51nod 1242 斐波那契数列的第N项——数学、矩阵快速幂

    普通算法肯定T了,所以怎么算呢?和矩阵有啥关系呢? 打数学符号太费时,就手写了: 所以求Fib(n)就是求矩阵  |  1  1  |n-1  第一行第一列的元素. |  1  0  | 其实学过线代 ...

  7. python脚本10_打印斐波那契数列的第101项

    #打印斐波那契数列的第101项 a = 1 b = 1 for count in range(99): a,b = b,a+b else: print(b) 方法2: #打印斐波那契数列的第101项 ...

  8. 斐波那契数列的第N项

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1242 题目: 斐波那契数列的定义如下:   F(0) = 0 ...

  9. Python初学者笔记:打印出斐波那契数列的前10项

    问题:斐波那契数列(意大利语: Successione di Fibonacci),又称黄金分割数列.费波那西数列.费波拿契数.费氏数列,指的是这样一个数列:0.1.1.2.3.5.8.13.21.- ...

随机推荐

  1. codevs3981动态最大子段和(线段树)

    3981 动态最大子段和  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond     题目描述 Description 题目还是简单一点好... 有n个数,a ...

  2. SpringBoot集成CAS单点登录,SSO单点登录,CAS单点登录(视频资料分享篇)

    单点登录(Single Sign On),简称为 SSO,是目前比较流行的企业业务整合的解决方案之一.SSO的定义是在多个应用系统中,用户只需要登录一次就可以访问所有相互信任的应用系统. 很早期的公司 ...

  3. vue---思维导图

    持续更新啦啦啦啦

  4. $CF1141A Game 23$

    这题很简单啊 可以用\(DFS\)来打 毕竟是 \(2^x*3^y=m 输出x+y啊\) 这是最简单的做法 #include <bits/stdc++.h> using namespace ...

  5. JavaScript--如何插入JS

    我们来看看如何写入JS代码?你只需一步操作,使用<script>标签在HTML网页中插入JavaScript代码.注意, <script>标签要成对出现,并把JavaScrip ...

  6. 【知识总结】后缀数组(Suffix_Array)

    又是一个学了n遍还没学会的算法-- 后缀数组是一种常用的处理字符串问题的数据结构,主要由\(sa\)和\(rank\)两个数组组成.以下给出一些定义: \(str\)表示处理的字符串,长度为\(len ...

  7. zoj3675 BFS+状态压缩

    #include <stdio.h> #include <string.h> #include <queue> using namespace std; int n ...

  8. 【Leetcode 3】Longest Substring Without Repeating Characters0

    Description: Given a string, find the length of the longest substring without repeating characters. ...

  9. 328 Odd Even Linked List 奇偶链表

    Given a singly linked list, group all odd nodes together followed by the even nodes. Please note her ...

  10. S2深入.NET编程总结

    不知从几何时,我也开始变得懒了,以往为了学习的那股子斗劲也早已不在,是时候反思反思了.失败的检测成绩希望可以把我唤醒. 经过总结,在本书中大概学到了这些知识: 1.如果一个类可序列化,则它的子类和包含 ...