time limit per test2 seconds

memory limit per test256 megabytes

inputstandard input

outputstandard output

Student Vladislav came to his programming exam completely unprepared as usual. He got a question about some strange algorithm on a graph — something that will definitely never be useful in real life. He asked a girl sitting next to him to lend him some cheat papers for this questions and found there the following definition:

The minimum spanning tree T of graph G is such a tree that it contains all the vertices of the original graph G, and the sum of the weights of its edges is the minimum possible among all such trees.

Vladislav drew a graph with n vertices and m edges containing no loops and multiple edges. He found one of its minimum spanning trees and then wrote for each edge its weight and whether it is included in the found tree or not. Unfortunately, the piece of paper where the graph was painted is gone and the teacher is getting very angry and demands to see the original graph. Help Vladislav come up with a graph so that the information about the minimum spanning tree remains correct.

Input

The first line of the input contains two integers n and m () — the number of vertices and the number of edges in the graph.

Each of the next m lines describes an edge of the graph and consists of two integers aj and bj (1 ≤ aj ≤ 109, bj = {0, 1}). The first of these numbers is the weight of the edge and the second number is equal to 1 if this edge was included in the minimum spanning tree found by Vladislav, or 0 if it was not.

It is guaranteed that exactly n - 1 number {bj} are equal to one and exactly m - n + 1 of them are equal to zero.

Output

If Vladislav has made a mistake and such graph doesn’t exist, print  - 1.

Otherwise print m lines. On the j-th line print a pair of vertices (uj, vj) (1 ≤ uj, vj ≤ n, uj ≠ vj), that should be connected by the j-th edge. The edges are numbered in the same order as in the input. The graph, determined by these edges, must be connected, contain no loops or multiple edges and its edges with bj = 1 must define the minimum spanning tree. In case there are multiple possible solutions, print any of them.

Examples

input

4 5

2 1

3 1

4 0

1 1

5 0

output

2 4

1 4

3 4

3 1

3 2

input

3 3

1 0

2 1

3 1

output

-1

【题目链接】:http://codeforces.com/problemset/problem/606/D

【题解】



首先把那些在最小生成树中的边选出来;

并且从小到大排序;

然后从1一直到n;给每相邻的两个点之间按顺序分配这些n-条边即i-1到i的边权小于等于i到i+1的边权;

得到类似下面的生成树



然后处理第n到第m条边(不在最小生成树中的自由边);

同样按照从小到大的顺序排序;

以插入两条自由边

8和12为例;

先插入8;



为什么不插入在2上?因为不能有重边;

显然1..2这个节点已经是最小生成树了;接下来的问题就是要把3这个点和1和2这个生成树组合子啊一起;那问题就是要从1到3连一条边还是2到3连一条边;因为8>7显然这条边权为8的边不能加入到最后的最小生成树;所以可以添加这一条边而不影响最后的答案;

然后再插入12



这个过场相当于1-3号节点已经确定最小生成树的方案了;然后要加入一个节点4;那问题就变成要选3->4这条边还是选1->4这条边了;显然因为新插入的12>11所以在最终的最小生成树里面不会选12这条边;所以这样的加入方法是可行的;

再补充插入一个13



还是同一个问题;

即1..3已经确定最小生成树的方式了;

要把那个4加入到最小生成树中;

则选择2->4还是3->4?

显然因为11<13所以会选择3->4这条边;而不会选择新插入的13那条边;

同时,我们不必要和1->4刚才那个插入的比较;因为那条边是比3->4大的;且在做MST的时候不会选那条边;所以不用比;

因为不能重边;

所以新加入的边的起点和终点的差都为1(对应到边上,边的差为2);

然后我们按照优先终点不动先动起点的原则来构造这张图;

这样停留在终点越久;我们要加入的边大于终点-1到终点那条边的边权的机会更大;

因为是按照顺序搞的;所以如果遇到不满足大于等于前一条边的情况就要输出无解.



【完整代码】

#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <set>
#include <map>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <queue>
#include <vector>
#include <stack>
#include <string>
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define LL long long using namespace std; const int MAXN = 1e5+100;
const int dx[5] = {0,1,-1,0,0};
const int dy[5] = {0,0,0,-1,1};
const double pi = acos(-1.0);
struct abc
{
int w,id,in;
}; int n,m;
abc a[MAXN];
int ans[MAXN][2]; void rel(LL &r)
{
r = 0;
char t = getchar();
while (!isdigit(t) && t!='-') t = getchar();
LL sign = 1;
if (t == '-')sign = -1;
while (!isdigit(t)) t = getchar();
while (isdigit(t)) r = r * 10 + t - '0', t = getchar();
r = r*sign;
} void rei(int &r)
{
r = 0;
char t = getchar();
while (!isdigit(t)&&t!='-') t = getchar();
int sign = 1;
if (t == '-')sign = -1;
while (!isdigit(t)) t = getchar();
while (isdigit(t)) r = r * 10 + t - '0', t = getchar();
r = r*sign;
} bool cmp(abc a,abc b)
{
if (a.in == b.in)
return a.w < b.w;
else
return a.in > b.in;
} int main()
{
//freopen("F:\\rush.txt","r",stdin);
rei(n);rei(m);
for (int i = 1;i <= m;i++)
{
int x,y;
rei(x);rei(y);
a[i].id = i;a[i].w = x;a[i].in = y;
}
sort(a+1,a+1+m,cmp);
for (int i = 1;i <= n-1;i++)
ans[a[i].id][0] = i,ans[a[i].id][1] = i+1;
int to = 2,from = 0;
for (int i = n;i <= m;i++)
{
if (to == from+2)
{
from =1;
to++;
}
else
from++;
if (a[i].w < a[to-1].w)
{
puts("-1");
return 0;
}
ans[a[i].id][0] = from,ans[a[i].id][1] = to;
}
for (int i = 1;i <= m;i++)
printf("%d %d\n",ans[i][0],ans[i][1]);
return 0;
}

【22.73%】【codeforces 606D】Lazy Student的更多相关文章

  1. 【 BowWow and the Timetable CodeForces - 1204A 】【思维】

    题目链接 可以发现 十进制4 对应 二进制100 十进制16 对应 二进制10000 十进制64 对应 二进制1000000 可以发现每多两个零,4的次幂就增加1. 用string读入题目给定的二进制 ...

  2. 【32.22%】【codeforces 602B】Approximating a Constant Range

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  3. 【63.73%】【codeforces 560A】Currency System in Geraldion

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  4. 【22.70%】【codeforces 591C】 Median Smoothing

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  5. 【codeforces 766E】Mahmoud and a xor trip

    [题目链接]:http://codeforces.com/contest/766/problem/E [题意] 定义树上任意两点之间的距离为这条简单路径上经过的点; 那些点上的权值的所有异或; 求任意 ...

  6. 【codeforces 733F】Drivers Dissatisfaction

    [题目链接]:http://codeforces.com/problemset/problem/733/F [题意] 给你n个点m条边; 让你从中选出n-1条边; 形成一个生成树; (即让n个点都联通 ...

  7. 【codeforces 799D】Field expansion

    [题目链接]:http://codeforces.com/contest/799/problem/D [题意] 给你长方形的两条边h,w; 你每次可以从n个数字中选出一个数字x; 然后把h或w乘上x; ...

  8. 【codeforces 22C】 System Administrator

    [题目链接]:http://codeforces.com/problemset/problem/22/C [题意] 给你n个点; 要求你构造一个含m条边的无向图; 使得任意两点之间都联通; 同时,要求 ...

  9. 【77.78%】【codeforces 625C】K-special Tables

    time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...

随机推荐

  1. 使用H5 formData对象上传图片和视频的文件时,必填的属性

    async : false,cache : false,contentType : false,// 告诉jQuery不要去设置Content-Type请求头processData : false,/ ...

  2. 关于DOM的有关总结

    1.获取DOM元素 document.getElementById()  通过id获取DOM元素 document.getElementsByClassName() 通过类名获取DOM元素 docum ...

  3. 洛谷——P1089 津津的储蓄计划

    https://www.luogu.org/problem/show?pid=1089 https://www.luogu.org/problem/show?pid=1089 题目描述 津津的零花钱一 ...

  4. VMware Ubuntu安装具体过程

    不是每个程序猿都必须玩过linux,仅仅是博主认为如今的非常多server都是linux系统的,而自己属于那种前端也搞.后台也搞,对框架搭建也感兴趣,可是非常多生产上的框架和工具都是安装在server ...

  5. BaaS简介

    SaaS(软件即服务:Software as a Service).IaaS(基础设施即服务:Infrastructure as a Service)和PaaS(平台即服务:Platform as a ...

  6. Static关键字深入理解

    1.static变量 按照是否静态的对类成员变量进行分类可分两种:一种是被static修饰的变量,叫静态变量或类变量:另一种是没有被static修饰的变量,叫实例变量. 两者的区别是: 对于静态变量在 ...

  7. 关于db2的一点记录

    近期听搞db2的兄弟说:db2数据库软件的license 不区分平台(os). 先记下来.像db2这么高大上的软件,接触的机会是比較少的. 另外:db2 的license是须要打的,不打的话,超过一段 ...

  8. Java 开发规约插件

    阿里巴巴 Java 开发规约插件初体验 阿里巴巴 Java 开发手册 又一次来谈<阿里巴巴 Java 开发手册>,经过这大半年的版本迭代,这本阿里工程师们总结出来避免写出那么多 Bug 的 ...

  9. widow下svn上传项目时的文件可执行权限问题

    还是项目上发现的问题,要上传Android的源码项目.这里客户端是windows的机器, 测试后发现俩个问题. 1. 文件后缀是.so的文件默认上传不了.    2. 文件后缀是.sh的文件,上传后, ...

  10. 【u247】生物进化

    Time Limit: 1 second Memory Limit: 128 MB [问题描述] 在一片茂密的原始森林中,生物学家们发现了几种远古时期的动物化石.他们将化石依次编号为1,2,3,--n ...