Diffie-Hellman Key Exchange – A Non-Mathematician’s Explanation
The Complete Diffie-Hellman Key Exchange Diagram

- The process begins when each side of the communication generates a private key. Each side then generates a public key (letter B), which is a derivative of the private key.
- The two systems then exchange their public keys. Each side of the communication now has its own private key and the other system's public key (see the area labeled letter C in the diagrams).
- Once the key exchange is complete, the process continues. The DH protocol generates "shared secrets"—identical cryptographic keys shared by each side of the communication.
- The shared secret encrypts a symmetric key for one of the symmetric algorithms, transmits it securely, and the distant end decrypts it with the shared secret.
The Amateur Mathematician's Explanation for "DH Math"
Using a common number, both sides use a different random number as a power to raise the common number. The results are then sent to each other. The receiving party raises the received number to the same random power they used before, and the results are the same on both sides. It's very clever. There is more computation in actual practice, but this example, which uses tiny numbers to illustrate the concept, shows a very clever mathematical approach. Each party raises the common number which is 2 in this example (this has nothing to do with binary—it is just the number "2") to a random power and sends the result to the other. The received number is raised to the same random power. Note that both parties come up with the same secret key, which was never transmitted intact.

SRC=https://learningnetwork.cisco.com/.../WP_Palmgren_DH.pdf
Diffie-Hellman Key Exchange – A Non-Mathematician’s Explanation的更多相关文章
- Diffie–Hellman key exchange
General overview[edit] Illustration of the idea behind Diffie–Hellman key exchange Diffie–Hellman ...
- 深入浅出Diffie–Hellman
一.作者 这个密钥交换方法,由惠特菲尔德·迪菲(Bailey Whitfield Diffie).马丁·赫尔曼(Martin Edward Hellman)于1976年发表. 二.说明 它是一种安全协 ...
- 浅析Diffie–Hellman
一.作者 这个密钥交换方法,由惠特菲尔德·迪菲(Bailey Whitfield Diffie).马丁·赫尔曼(Martin Edward Hellman)于1976年发表. 二.说明 它是一种安全协 ...
- Git 常见问题: unable to negotiate with *.*.*.*: no matching key exchange methodfound...
在Windows上更新了git 版本后,clone/pull时出现错误, unable to negotiate with *.*.*.*: no matching key exchange meth ...
- Navicat 用ssh通道连接时总是报错 (报错信息:SSH:expected key exchange group packet form serve
转:https://blog.csdn.net/qq_27463323/article/details/76830731 之前下了一个Navicat 11.0 版本 用ssh通道连接时总是报错 (报错 ...
- 连接远程数据库时出现 SSH: expected key exchange group packet from server / 2003 - Can't connect to MySQL server on 'XXX' (10038) / 1130 - Host 'XXX' is not allowed to connect to this MySQL server
昨天在自己的远程服务器上玩,把系统重装了.新装了MySQL,在本地用navicat连接的时候出了几个小问题. 问题一:SSH: expected key exchange group packet f ...
- git clone 报错Unable to negotiate with xxx.xxx.xxx.xxx port 12345: no matching key exchange method found. Their offer: diffie-hellman-group1-sha1
在执行git clone命令报错 Unable to negotiate with xxx.xxx.xxx.xxx port 12345: no matching key exchange metho ...
- 关于no matching key exchange method found. Their offer: diffie-hellman-group1-sha1的解决办法
原文链接:https://mycyberuniverse.com/error/no-matching-key-exchange-method-found-openssh7.html What caus ...
- 数据库连接出错 expected key exchange group packet form server
数据库连接出错 expected key exchange group packet form server SSH: expected key exchange group packet form ...
随机推荐
- MWPhotoBrowser 属性详解 和代理解释
--------0.MWPhoto简单属性解释---------------- MWPhoto *photo = [MWPhoto photoWithURL:[NSURL URLWithString: ...
- java中String\十六进制String\byte[]之间相互转换函数
java二进制,字节数组,字符,十六进制,BCD编码转换2007-06-07 00:17/** *//** * 把16进制字符串转换成字节数组 * @param hex * @return */ pu ...
- 【拆分版】 Docker-compose构建Logstash多实例,基于7.1.0
[拆分版]Docker-compose构建Logstash多实例 写在最前 说起Logstash,这个组件并没有什么集群的概念,与其说是集群,不如说是各自去收集日志分析过滤存储到Elasticsear ...
- GitHub 上排名前 100 的 IOS 开源库简介
主要对当前 GitHub 排名前 100 的项目做一个简单的简介, 方便初学者快速了解到当前 Objective-C 在 GitHub 的情况. 项目名称 项目信息 1. AFNetworking 作 ...
- Delegates, Events and Singletons with Unity3D – C#
在这里我将演示怎样创建代表. 事件和Singletons 在一起工作. 本教程为 Unity3D 编写. 我想知道这为什么?作为一个年轻的自学程序猿,我常常发现自己写tons 和布尔的语句,以确 ...
- Remove Duplicates from Sorted Array [Python]
Given a sorted array, remove the duplicates in place such that each element appear only once and ret ...
- Swift3.0 功能二 (表情键盘与图文混排)
随着iOS越来越多表情键盘以及图文混排的需求,本文运用Swift3.0系统的实现其功能以及封装调用方法,写的不好,如有错误望各位提出宝贵意见,多谢 项目源码地址: 相关知识点都有标识 项目源码地址 废 ...
- 事件处理之二:点击事件监听器的五种写法 分类: H1_ANDROID 2013-09-11 10:32 4262人阅读 评论(1) 收藏
首选方法二! 方法一:写一个内部类,在类中实现点击事件 1.在父类中调用点击事件 bt_dail.setOnClickListener(new MyButtonListener()); 2.创建内部类 ...
- 【codeforces 742A】Arpa’s hard exam and Mehrdad’s naive cheat
time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...
- mysql 序列号生成器 (自定义函数)
https://yq.aliyun.com/articles/42600 http://bbs.csdn.net/topics/360203885 http://www.tuicool.com/art ...