【BZOJ4176】Lucas的数论-杜教筛
求$$\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}f(ij)$$,其中$f(x)$表示$x$的约数个数,$0\leq n\leq 10^9$,答案膜$10^9+7$
题解
首先有个妙不可言(被hjw污染了)的结论:$$f(nm)=\sum\limits_{i|n}\sum\limits_{j|m}[gcd(i,j)=1]$$
证明:咕
那么大力推一波式子:
$$\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}f(ij)$$
$$=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}\sum\limits_{a|i}\sum\limits_{b|j}[gcd(a,b)=1]$$
$$=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}\sum\limits_{a|i}\sum\limits_{b|j}\sum\limits_{d|gcd(a,b)}\mu(d)$$
$$=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}\sum\limits_{a|i}\sum\limits_{b|j}\sum\limits_{d|a\& d|b}\mu(d)$$
$$=\sum\limits_{d=1}^{n}\sum\limits_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum\limits_{j=1}^{\lfloor\frac{n}{d}\rfloor}\sum\limits_{a=1}^{\lfloor\frac{n}{id}\rfloor}\sum\limits_{b=1}^{\lfloor\frac{n}{jd}\rfloor}\mu(d)$$
$$=\sum\limits_{d=1}^{n}\mu(d)(\sum\limits_{i=1}^{\lfloor\frac{n}{d}\rfloor}\lfloor\frac{n}{id}\rfloor)$$
杜教筛+莫比乌斯反演解决
时间复杂度:$O(n^{\frac{2}{3}}logn+n^{\frac{3}{4}})$
代码:
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define mod 1000000007
using namespace std;
typedef long long ll;
ll n,pri=,p[],miu[],pre[],ans=;
bool isp[];
map<ll,ll>HASH;
void _(){
miu[]=pre[]=;
for(int i=;i<=;i++){
if(!isp[i]){
p[++pri]=i;
miu[i]=-;
}
for(int j=;j<=pri&&i*p[j]<=;j++){
isp[i*p[j]]=true;
if(i%p[j]==){
miu[i*p[j]]=;
break;
}
miu[i*p[j]]=-miu[i];
}
}
for(int i=;i<=;i++){
pre[i]=(pre[i-]+miu[i]+mod)%mod;
}
}
ll work1(ll x){
if(x<=)return pre[x];
if(HASH.count(x))return HASH[x];
ll ret=;
for(int i=,j;i<=x;i=j+){
j=x/(x/i);
ret=(ret-(j-i+)*work1(x/i)%mod+mod)%mod;
}
HASH[x]=ret;
return ret;
}
ll work2(ll x){
ll ret=;
for(int i=,j;i<=x;i=j+){
j=x/(x/i);
ret=(ret+(x/i)*(j-i+))%mod;
}
return ret*ret%mod;
}
int main(){
_();
scanf("%lld",&n);
for(int i=,j;i<=n;i=j+){
j=n/(n/i);
ans=(ans+(work1(j)-work1(i-)+mod)%mod*work2(n/i))%mod;
}
printf("%lld",ans);
return ;
}
【BZOJ4176】Lucas的数论-杜教筛的更多相关文章
- bzoj4176. Lucas的数论 杜教筛
题意:求\(\sum_{i=1}^n\sum_{j=1}^nd(ij),d是约数个数函数\) 题解:首先有一个结论\(d(ij)=\sum_{x|i}\sum_{y|j}[(i,j)==1]\) 那么 ...
- BZOJ 4176: Lucas的数论 [杜教筛]
4176: Lucas的数论 题意:求\(\sum_{i=1}^n \sum_{j=1}^n \sigma_0(ij)\) \(n \le 10^9\) 代入\(\sigma_0(nm)=\sum_{ ...
- bzoj 4176: Lucas的数论 -- 杜教筛,莫比乌斯反演
4176: Lucas的数论 Time Limit: 30 Sec Memory Limit: 256 MB Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么 ...
- [bzoj 4176] Lucas的数论 (杜教筛 + 莫比乌斯反演)
题面 设d(x)d(x)d(x)为xxx的约数个数,给定NNN,求 ∑i=1N∑j=1Nd(ij)\sum^{N}_{i=1}\sum^{N}_{j=1} d(ij)i=1∑Nj=1∑Nd(ij) ...
- 【XSY2731】Div 数论 杜教筛 莫比乌斯反演
题目大意 定义复数\(a+bi\)为整数\(k\)的约数,当且仅当\(a\)和\(b\)为整数且存在整数\(c\)和\(d\)满足\((a+bi)(c+di)=k\). 定义复数\(a+bi\)的实部 ...
- BZOJ3944 Sum 数论 杜教筛
原文链接http://www.cnblogs.com/zhouzhendong/p/8671759.html 题目传送门 - BZOJ3944 题意 多组数据(组数<=10). 每组数据一个正整 ...
- UOJ#221. 【NOI2016】循环之美 数论,杜教筛
原文链接www.cnblogs.com/zhouzhendong/p/UOJ221.html 题解 首先把题目转化为求 \[\sum_{x=1}^n \sum_{y=1}^m [\gcd(x,y) = ...
- 【bzoj4176】Lucas的数论 莫比乌斯反演+杜教筛
Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目"求Sigma(f(i)),其中1<=i< ...
- BZOJ4176 Lucas的数论 【莫比乌斯反演 + 杜教筛】
题目 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目"求Sigma(f(i)),其中1<=i<=N", ...
随机推荐
- 移动端和pc端的判断,不同端做不同的处理
1.通过js判段是pc端还是移动端 function browserRedirect() { var type = ""; var sUserAgent = navigator.u ...
- create raid5
# umout 所有数据disk for i in {1..11};do umount /disk$i;done # 修改/etc/fstab,注释掉 /dev/sd[b-l] vim /etc/fs ...
- ios兼容 input输入时弹出键盘框 页面整体上移键盘框消失后在ios上页面不能回弹的问题
前端h5混合开发手机端ios 当有input输入时,手机下方弹出键盘使页面上移,当输入完成,键盘消失后页面显示回到原位,但实际不能点击(可点击上方区域,有反应),也就是说实际是没有回弹. 解决办法: ...
- 本地启动项目后cookie跨域获取不到的处理方式
问题现象 最近在做Vue项目,很多时候调试代码需要本地访问localhost来进行,然而请求接口是通过代理实现的,那么就会存在一种情况是:代理域名下种植的cookie,在localhost域名下访 ...
- debian 9 添加源
1.将下面内容的添加入/etc/apt/sources.list(香港镜像) #For software deb http://mirrors.ustc.edu.cn/debian/ stretch ...
- myeclipse 字体设置为UTF-8
将myeclipse设置成utf-8格式的方式如下: 1.windows->Preferences打开"首选项"对话框,如图: 2.点击左侧导航树,导航到general-&g ...
- IDEA Maven Web项目 clone到本地导入到Eclipse中,启动服务器的时候会出现这个错误:SEVERE: Exception starting filter [hiddenHttpMethodFilter]
背景(Background): 我将一个IDEA的maven web项目clone到本地,并导入到Eclipse中. I imported a MAVEN WEB project which was ...
- [luogu] P3294 [SCOI2016]背单词 (贪心)
题目描述 Lweb 面对如山的英语单词,陷入了深深的沉思,"我怎么样才能快点学完,然后去玩三国杀呢?".这时候睿智的凤老师从远处飘来,他送给了 Lweb 一本计划册和一大缸泡椒,他 ...
- 极路由4pro安装java(Jamvm 2.0.0 + gnu classpath 0.9.8)
首先试了gnu classpath 0.9.9,编译不过后来改成0.9.8 编译环境 OS: 64位 Ubuntu 16.04 LTS(vmware虚拟机) SDK: 用之前讲过的官方SDKmtmip ...
- POJ 1942
开始时竟然用了分情况讨论. 仔细思考一下,哈哈,发现不过是多重集合的组合数而已. #include <iostream> #include <cstdio> #include ...