poj 1410 线段相交判断
http://poj.org/problem?id=1410
| Time Limit: 1000MS | Memory Limit: 10000K | |
| Total Submissions: 11329 | Accepted: 2978 |
Description
An example:
line: start point: (4,9)
end point: (11,2)
rectangle: left-top: (1,5)
right-bottom: (7,1)
Figure 1: Line segment does not intersect rectangle
The line is said to intersect the rectangle if the line and the rectangle have at least one point in common. The rectangle consists of four straight lines and the area in between. Although all input values are integer numbers, valid intersection points do not have to lay on the integer grid.
Input
xstart ystart xend yend xleft ytop xright ybottom
where (xstart, ystart) is the start and (xend, yend) the end point of the line and (xleft, ytop) the top left and (xright, ybottom) the bottom right corner of the rectangle. The eight numbers are separated by a blank. The terms top left and bottom right do not imply any ordering of coordinates.
Output
Sample Input
1
4 9 11 2 1 5 7 1
Sample Output
F
Source
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <algorithm>
#include <math.h> using namespace std;
typedef struct point
{
int x,y;
}point; typedef struct line
{
point st,ed;
}line; int crossProduct(point a,point b,point c)
{
return (c.x-a.x)*(b.y-a.y)-(c.y-a.y)*(b.x-a.x);
} bool onSegment(point a,point b,point c)
{
int maxx=max(a.x,b.x);
int maxy=max(a.y,b.y);
int minx=min(a.x,b.x);
int miny=min(a.y,b.y);
if(crossProduct(a,b,c)==&&(c.x<=maxx)&&(c.x>=minx)&&(c.y<=maxy)&&(c.y>=miny))
{
return true;
}
return false;
} bool segIntersect(point p1,point p2,point p3,point p4)
{
int d1=crossProduct(p3,p4,p1);
int d2=crossProduct(p3,p4,p2);
int d3=crossProduct(p1,p2,p3);
int d4=crossProduct(p1,p2,p4);
if(d1*d2< && d3*d4<)
return true;
if(d1== && onSegment(p3,p4,p1))
return true;
if(d2== && onSegment(p3,p4,p2))
return true;
if(d3== && onSegment(p1,p2,p3))
return true;
if(d4== && onSegment(p1,p2,p4))
return true;
return false;
} point p[];
line li[];
int num[]; int main()
{
int n,m,i,j;
line tmp;
int xleft,ytop,xright,ybottom;
scanf("%d",&n);
while(n--)
{
scanf("%d%d%d%d%d%d%d%d",&tmp.st.x,&tmp.st.y,&tmp.ed.x,&tmp.ed.y
,&xleft,&ytop,&xright,&ybottom);
li[].st.x=xleft;
li[].st.y=ytop;
li[].ed.x=xleft;
li[].ed.y=ybottom; li[].st.x=xleft;
li[].st.y=ybottom;
li[].ed.x=xright;
li[].ed.y=ybottom; li[].st.x=xright;
li[].st.y=ybottom;
li[].ed.x=xright;
li[].ed.y=ytop; li[].st.x=xright;
li[].st.y=ytop;
li[].ed.x=xleft;
li[].ed.y=ytop; bool flag=true;
for(i=;i<;i++)
{
if(segIntersect(tmp.st,tmp.ed,li[i].st,li[i].ed))
{
flag=false;
break;
}
} int maxx=max(xleft,xright);
int maxy=max(ytop,ybottom);
int minx=min(xleft,xright);
int miny=min(ytop,ybottom);
if(tmp.st.x<=maxx&&tmp.st.x>=minx&&tmp.st.y>=miny&&tmp.st.y<=maxy
||tmp.ed.x<=maxx&&tmp.ed.x>=minx&&tmp.ed.y>=miny&&tmp.ed.y<=maxy)
flag=false; if(flag)
printf("F\n");
else printf("T\n");
}
return ;
}
poj 1410 线段相交判断的更多相关文章
- POJ 3449 Geometric Shapes(判断几个不同图形的相交,线段相交判断)
Geometric Shapes Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 1243 Accepted: 524 D ...
- POJ 1039 Pipe(直线和线段相交判断,求交点)
Pipe Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 8280 Accepted: 2483 Description ...
- POJ 1410 Intersection(判断线段交和点在矩形内)
Intersection Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 9996 Accepted: 2632 Desc ...
- POJ 3304 Segments (直线和线段相交判断)
Segments Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7739 Accepted: 2316 Descript ...
- POJ 1066 Treasure Hunt(线段相交判断)
Treasure Hunt Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 4797 Accepted: 1998 Des ...
- poj 1269 线段相交/平行
模板题 注意原题中说的线段其实要当成没有端点的直线.被坑了= = #include <cmath> #include <cstdio> #include <iostrea ...
- poj 2653 线段相交
题意:一堆线段依次放在桌子上,上面的线段会压住下面的线段,求找出没被压住的线段. sol:从下向上找,如果发现上面的线段与下面的相交,说明被压住了.break掉 其实这是个n^2的算法,但是题目已经说 ...
- zoj 1010 (线段相交判断+多边形求面积)
链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=10 Area Time Limit: 2 Seconds Mem ...
- poj 1066 线段相交
链接:http://poj.org/problem?id=1066 Treasure Hunt Time Limit: 1000MS Memory Limit: 10000K Total Subm ...
随机推荐
- javax.transaction.xa.XAException: java.sql.SQLException: 无法创建 XA 控制连接。(SQL 2000,SQL2005,SQL2008)
javax.transaction.xa.XAException: java.sql.SQLException:无法创建 XA 控制连接.错误: 未能找到存储过程'master..xp_sqljdbc ...
- mysql开启远程访问
1.MySql-Server 出于安全方面考虑只允许本机(localhost, 127.0.0.1)来连接访问. 这对于 Web-Server 与 MySql-Server 都在同一台服务器上的网站架 ...
- Mac OS finder : 显示和隐藏文件[夹] show and hide files or folders
Finder默认是不显示隐藏文件[夹]的,要显示出怎么办? 要显示的话,可以GUI(graphic user interface)和CLI(command line interface)两种方式 CL ...
- Oracle将表keep到内存
一.引言: 有时候一些基础表需要非常的频繁访问,尤其是在一些循环中,对该表中的访问速度将变的非常重要.为了提高系统的处理性能,可以考虑将一些表及索引读取并保存到内存中. 二.关于keep内存的几个参数 ...
- JavaEE基础(二十)/IO流
1.IO流(IO流概述及其分类) 1.概念 IO流用来处理设备之间的数据传输 Java对数据的操作是通过流的方式 Java用于操作流的类都在IO包中 流按流向分为两种:输入流,输出流. 流按操作类型分 ...
- java 堆栈 静态
所以静态变量和非静态变量的区别就在于静态变量可以用来计数,而非静态变量则不行. 理解了内存,就理解了一切,就理解了各种各样的语言.所有的语言无非都是这样:局部变量分配内存永远在栈里面,new出来的东西 ...
- js认清this的第一步
学习 this 的第一步是明白 this 既不指向函数自身也不指向函数的词法作用域, 你也许被这样的解释误导过, 但其实它们都是错误的.this 实际上是在函数被调用时发生的绑定, 它指向什么完全取决 ...
- android 数据库操作详解
请看郭大神的八篇专栏,包含sql语句 android封装的databasehelper 和郭大神自己的LitePal 三种使用详解 http://blog.csdn.net/column/deta ...
- CountDownLatch的原理学习
转载:http://blog.csdn.net/yanyan19880509/article/details/52349056 前言 前面介绍了ReentrantLock,又叫排他锁,本篇主要通过Co ...
- A fatal error has been detected by the Java Runtime Environment(jdk 1.6的一个BUG)
几天做项目,生成一堆注解的实体,当实体数超过86个时,jvm报错: # # A fatal error has been detected by the Java Runtime Environmen ...