DP+容斥原理


  sigh……就差一点……

  四种硬币的数量限制就是四个条件,满足条件1的方案集合为A,满足条件2的方案集合为B……我们要求的就是同时满足四个条件的方案集合$A\bigcap B\bigcap C\bigcap D$的大小。

  全集很好算……一个完全背包>_>$4×10^5$就可以预处理出来……

  然后我sb地去算满足一个条件、两个条件……的方案数去了QAQ根本算不出来啊

  orz了hzwer的题解,其实是算 不满足一个条件、不满足两个条件…的方案数的,因为如果第一种硬币超了,说明用了d[1]+1个第一种硬币,剩下的随意!!!而这个剩下的部分就是 f[rest]!!所以就可以O(1)查询了……sad

  人太弱有些悲伤……

 /**************************************************************
Problem: 1042
User: Tunix
Language: C++
Result: Accepted
Time:40 ms
Memory:2052 kb
****************************************************************/ //BZOJ 1042
#include<vector>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define rep(i,n) for(int i=0;i<n;++i)
#define F(i,j,n) for(int i=j;i<=n;++i)
#define D(i,j,n) for(int i=j;i>=n;--i)
#define pb push_back
using namespace std;
inline int getint(){
int v=,sign=; char ch=getchar();
while(ch<''||ch>''){ if (ch=='-') sign=-; ch=getchar();}
while(ch>=''&&ch<=''){ v=v*+ch-''; ch=getchar();}
return v*sign;
}
const int N=1e5+,INF=~0u>>;
typedef long long LL;
/******************tamplate*********************/
int c[],d[],s,n;
LL ans,f[N];
void dfs(int x,int k,int sum){
if (sum<) return;
if (x==){
if (k&) ans-=f[sum];
else ans+=f[sum];
return;
}
dfs(x+,k+,sum-(d[x]+)*c[x]);
dfs(x+,k,sum);
}
int main(){
#ifndef ONLINE_JUDGE
freopen("1042.in","r",stdin);
freopen("1042.out","w",stdout);
#endif
F(i,,) c[i]=getint(); n=getint();
f[]=;
F(i,,) F(j,c[i],1e5) f[j]+=f[j-c[i]]; F(i,,n){
F(i,,) d[i]=getint(); s=getint();
ans=;
dfs(,,s);
printf("%lld\n",ans);
}
return ;
}

1042: [HAOI2008]硬币购物

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 1282  Solved: 754
[Submit][Status][Discuss]

Description

硬币购物一共有4种硬币。面值分别为c1,c2,c3,c4。某人去商店买东西,去了tot次。每次带di枚ci硬币,买si的价值的东西。请问每次有多少种付款方法。

Input

第一行 c1,c2,c3,c4,tot 下面tot行 d1,d2,d3,d4,s

Output

每次的方法数

Sample Input

1 2 5 10 2
3 2 3 1 10
1000 2 2 2 900

Sample Output

4
27

HINT

数据规模

di,s<=100000

tot<=1000

Source

[Submit][Status][Discuss]

【BZOJ】【1042】【HAOI2008】硬币购物的更多相关文章

  1. Bzoj 1042: [HAOI2008]硬币购物 容斥原理,动态规划,背包dp

    1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1747  Solved: 1015[Submit][Stat ...

  2. bzoj 1042: [HAOI2008]硬币购物 dp+容斥原理

    题目链接 1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1706  Solved: 985[Submit][ ...

  3. BZOJ 1042: [HAOI2008]硬币购物( 背包dp + 容斥原理 )

    先按完全背包做一次dp, dp(x)表示x元的东西有多少种方案, 然后再容斥一下. ---------------------------------------------------------- ...

  4. BZOJ 1042: [HAOI2008]硬币购物 [容斥原理]

    1042: [HAOI2008]硬币购物 题意:4种硬币.面值分别为c1,c2,c3,c4.1000次询问每种硬币di个,凑出\(s\le 10^5\)的方案数 完全背包方案数? 询问太多了 看了题解 ...

  5. BZOJ 1042: [HAOI2008]硬币购物 容斥+背包

    1042: [HAOI2008]硬币购物 Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请 ...

  6. BZOJ 1042 [HAOI2008]硬币购物(完全背包+容斥)

    题意: 4种硬币买价值为V的商品,每种硬币有numi个,问有多少种买法 1000次询问,numi<1e5 思路: 完全背包计算出没有numi限制下的买法, 然后答案为dp[V]-(s1+s2+s ...

  7. [BZOJ 1042] [HAOI2008] 硬币购物 【DP + 容斥】

    题目链接:BZOJ - 1042 题目分析 首先 Orz Hzwer ,代码题解都是看的他的 blog. 这道题首先使用DP预处理,先求出,在不考虑每种硬币个数的限制的情况下,每个钱数有多少种拼凑方案 ...

  8. BZOJ 1042: [HAOI2008]硬币购物 (详解)(背包&容斥原理)

    题面:https://www.cnblogs.com/fu3638/p/6759919.html 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚 ...

  9. BZOJ 1042: [HAOI2008]硬币购物 容斥原理_背包_好题

    Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买s i的价值的东西.请问每次有多少种付款方法. 题解: 十分喜 ...

  10. ●BZOJ 1042 [HAOI2008]硬币购物

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1042 题解: 容斥原理,dp预处理首先跑个无限物品的背包dp求出dp[i]表示在四种物品都有 ...

随机推荐

  1. [leetcode]_Balanced Binary Tree

    第四道树题,逐渐能写递归了.虽然最后AC的代码还是看了网络,但是距离成功攻克此类问题仅一步之遥. 题目:一棵树,判断是否为AVL.(AVL条件:树上任意一点的左右子树的高度差<=1) 思路:树依 ...

  2. c语言入门教程 / c语言入门经典书籍

    用C语言开始编写代码初级:C语言入门必备(以下两本书任选一本即可) C语言是作为从事实际编程工作的程序员的一种工具而出现的,本阶段的学习最主要的目的就是尽快掌握如何用c语言编写程序的技能.对c语言的数 ...

  3. 在PyQt中直接使用ui文件并加载qrc资源文件

    1. 用Qt设计师创建一个包含qrc资源文件的ui文件 2.打开cmd使用以下命令把qrc资源文件转换成十六进制的py文件 pyrcc4 -o C:\res.py C:\res.qrc pyrcc4 ...

  4. Thinkpad 小紅點設定

    因为我只需要这么多设置,所以就只写这么多了sudo gedit /etc/rc.local echo -n 240 > /sys/devices/platform/i8042/serio1/se ...

  5. MYSQL数据库表中字段追加字符串内容

    $sql="update parts set p_notes=concat(p_notes,'{$p_notes}') where p_id={$p_id}"; parts为表名 ...

  6. Python学习教程(learning Python)--1.2.2 Python格式化输出基础

    本节讨论为何要格式化输出数据? 先看一段代码吧,本程序的功能是计算月支付金额. amount_due = 5000.0 #年支付金额 monthly_payment = amount_due / 12 ...

  7. WPF之旅(二)- XAML

    什么是XAML XAML(Extensible Application Markup Lanaguage的简写,发音“zammel”)是用于实例化.NET对象的标记语言.尽管XAML是一种可以用于诸多 ...

  8. java解析XML几种方式

    第一种:DOM. DOM的全称是Document Object Model,也即文档对象模型.在应用程序中,基于DOM的XML分析器将一个XML文档转换成一个对象模型的集合(通常称DOM树),应用程序 ...

  9. VC下的人人对弈五子棋(dos)

    #include"stdio.h"#include"stdlib.h"#include"string.h"#include "io ...

  10. Linux环境PostgreSQL源码编译安装

    Linux环境PostgreSQL源码编译安装 Linux版本: Red Hat 6.4 PostgreSQL版本: postgresql-9.3.2.tar.gz 数据存放目录: /var/post ...