POJ #1141 - Brackets Sequence - TODO: POJ website issue
A bottom-up DP. To be honest, it is not easy to relate DP to this problem. Maybe, all "most"\"least" problems can be solved using DP..
Reference: http://blog.sina.com.cn/s/blog_8e6023de01014ptz.html
There's an important details to AC: in case of "())", there are 2 solutions: ()() and (()). For the AC code, the former one is preferred.
// 1141
// http://blog.sina.com.cn/s/blog_8e6023de01014ptz.html
//
#include <stdio.h>
#include <string.h>
#include <memory.h> #define MAX_LEN 101 bool isMatched(char *in, int i, int j)
{
return (in[i] == '(' && in[j] == ')') || (in[i] == '[' && in[j] == ']');
}
void printPath(int path[MAX_LEN][MAX_LEN], int i, int j, char in[MAX_LEN])
{
int sInx = path[i][j];
if (sInx == -)
{
if (i == j)
{
//printf("Complete @ %d\n", i);
switch (in[i])
{
case '(':
case ')': printf("()"); break;
case '[':
case ']': printf("[]"); break;
}
return;
}
else if (i + == j)
{
//printf("Already matched: [%d, %d]\n", i, j);
printf("%c%c", in[i], in[j]);
return;
}
else if ((i+) < j)
{
printf("%c", in[i]);
printPath(path, i + , j - , in);
printf("%c", in[j]);
}
}
else
{
printPath(path, , path[i][j], in);
//printf("Break @ %d\n", path[i][j], in);
printPath(path, path[i][j] + , j, in);
}
} void calc(char in[MAX_LEN])
{
unsigned slen = strlen(in);
if (slen == )
{
printf("\n");
return;
}
else if (slen > )
{
int dp[MAX_LEN][MAX_LEN];
int path[MAX_LEN][MAX_LEN]; // Init
for (int i = ; i < MAX_LEN; i ++)
for (int j = ; j < MAX_LEN; j++)
{
dp[i][j] = 0xFFFFFF;
path[i][j] = -;
} // Def: dp[i][j] = min num of chars to add, from i to j
// Recurrence relation:
// 1. dp[i][j] = min(dp[i][j], dp[i][k] + dp[k+1][j]), where k in (i..j)
// 2. dp[i][j] = dp[i+1][j-1], <IF in[i]:in[j] = [] or ()> // i..j is range, k is interval
for (int k = ; k < slen; k++) // NOTE: this is a bottom-up DP. We have to go from 0 to slen as interval
for (int i = , j = i + k; i < slen - k; i ++, j ++)
{
if (i == j)
{
dp[i][j] = ;
path[i][j] = -;
continue;
}
bool bIsMatched = isMatched(in, i, j);
if (bIsMatched) // eq 2
{
if (k == ) // length == 2
{
dp[i][j] = ;
path[i][j] = -;
continue;
}
else if (k > ) // length > 2
{
dp[i][j] = dp[i + ][j - ];
path[i][j] = -; // we don't split matched pair
// A: we still go ahead with eq1
}
}
//else // eq1
{
// t is iterator of split index
for (int t = i; t < j; t++)
{
int newVal = dp[i][t] + dp[t + ][j];
if (newVal <= dp[i][j]) // Label A: we prefer splitted solution
{
dp[i][j] = newVal;
path[i][j] = t;
}
}
}
}
printPath(path, , slen - , in);
} // if (slen > 0)
} int main()
{
char in[MAX_LEN] = { };
gets(in);
calc(in);
printf("\n");
return ;
}
POJ #1141 - Brackets Sequence - TODO: POJ website issue的更多相关文章
- 区间DP POJ 1141 Brackets Sequence
Brackets Sequence Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 29520 Accepted: 840 ...
- POJ 1141 Brackets Sequence
Brackets Sequence Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 29502 Accepted: 840 ...
- poj 1141 Brackets Sequence 区间dp,分块记录
Brackets Sequence Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 35049 Accepted: 101 ...
- POJ 1141 Brackets Sequence(区间DP, DP打印路径)
Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...
- POJ 1141 Brackets Sequence (区间DP)
Description Let us define a regular brackets sequence in the following way: 1. Empty sequence is a r ...
- poj 1141 Brackets Sequence (区间dp)
题目链接:http://poj.org/problem?id=1141 题解:求已知子串最短的括号完备的全序列 代码: #include<iostream> #include<cst ...
- poj 1141 Brackets Sequence(区间DP)
题目:http://poj.org/problem?id=1141 转载:http://blog.csdn.net/lijiecsu/article/details/7589877 定义合法的括号序列 ...
- POJ 1141 Brackets Sequence(括号匹配二)
题目链接:http://poj.org/problem?id=1141 题目大意:给你一串字符串,让你补全括号,要求补得括号最少,并输出补全后的结果. 解题思路: 开始想的是利用相邻子区间,即dp[i ...
- POJ 1141 Brackets Sequence(DP)
题目链接 很早 很早之前就看过的一题,今天终于A了.状态转移,还算好想,输出路径有些麻烦,搞了一个标记数组的,感觉不大对,一直wa,看到别人有写直接输出的..二了,直接输出就过了.. #include ...
随机推荐
- 常见的XMLHttpRequest.status状态码
XMLHttpRequest.status状态码 1xx-信息提示 这些状态代码表示临时的响应.客户端在收到常规响应之前,应准备接收一个或多个1xx响应. 100-继续. 101-切换协议. 2xx- ...
- VIM键盘快捷键映射
http://www.jianshu.com/p/216811be226b
- C语言常用排序全解(转)
目的:重温经典排序思想,并用C语言指针实现排序算法================================================*/ /*====================== ...
- 正则表达式中参数g、i、m的作用(share)
参数 g g 只影响于 exec.match 方法. 若不指定 g,则:每次调用 exec 都只返回第一个匹配:match 也是只返回第一个匹配. 若指定 g,则:每次调用 exec 都从上一个匹配之 ...
- Java BTrace实战(1)--BTrace的入门和使用
前言: 对线上的java服务, 往往采用日志进行问题处理和分析. 倘若日志缺乏相关的信息时, 那又该如何处理? 远程调试会影响服务的正常工作, 修改代码重新部署的方案其实时性和灵活性难以保证(线上服务 ...
- HDU 1392 凸包
Surround the Trees Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...
- install usb serial
Install driver for USB-UART bridge converter on Linux Ubuntu12.04 Ubuntu下USB转串口芯片驱动程序安装,支持cp210x,pl2 ...
- Apache运行模式
Apache 2.X 支持插入式并行处理模块,称为多路处理模块(MPM: Multi-Processing Modules).在编译apache时必须选择也只能选择一个MPM,对类UNIX系统,有几个 ...
- 按Right-BICEP的测试用例
测试方法:Right-BICEP 测试计划 1.Right-结果是否正确? 2.B-是否所有的边界条件都是正确的? 3.P-是否满足性能要求? 4.结果是否有符合要求的20道题目? 5.所得到的最大数 ...
- POJ-1947 Rebuilding Roads (树形DP+分组背包)
题目大意:将一棵n个节点的有根树,删掉一些边变成恰有m个节点的新树.求最少需要去掉几条边. 题目分析:定义状态dp(root,k)表示在以root为根节点的子树中,删掉一些边变成恰有k个节点的新树需要 ...