Data manipulation primitives in R and Python

Both R and Python are incredibly good tools to manipulate your data and their integration is becoming increasingly important1. The latest tool for data manipulation in R is Dplyr2 whilst Python relies onPandas3.

In this blog post I'll show you the fundamental primitives to manipulate your dataframes using both libraries highlighting their major advantages and disadvantages.

Theory first

Data Frames are basically tables. Codd, E.F. in 1970 defined Relational algebra4 as the basic the theory to work on relational tables. It defines the following operations:

  • Projection (π)
  • Selection (σ)
  • Rename (ρ)
  • Set operators (union, difference, cartesian product)
  • Natural join (⋈)

SQL dialects also added the following

  • Aggregations
  • Group by operations

Why we care? People redefined these basic operations over and over in the last 40 years starting with SQL until today latest query languages. This framework will give us a general language independent perspective on the data manipulation.

Hands on

I will use the nycflights13 dataset used to introduce dplyr5 to present the functions. If you are interested you can download this entire blog post as an IPython notebook. Let's initialise our environment first:

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# Load the R magic command
%load_ext rpy2.ipython
from rpy2.robjects import pandas2ri
 
# numpy available as np
# pyplot available as ply
%pylab
 
from pandas import *
 
Using matplotlib backend: MacOSX
Populating the interactive namespace from numpy and matplotlib
 
%%R -o flights
#sink(type="output")
sink("/dev/null")
library("dplyr");
library(nycflights13);
 
flights = pandas2ri.ri2py(flights)
 

Data summary

In both libraries it is possible to quickly print a quick summary of your dataframe. Pandas has an object oriented approach and you can invokehead()tail() and describe() directly on your dataframe object. R has a procedural approach and its functions take a dataframe as the first input.

Python R
df.head() head(df)
df.tail() tail(df)
df.describe() summary(df)
 
1
2
3
4
5
6
7
8
9
10
# Python
 
flights.head();
flights.tail();
flights.describe();
 
%R head(flights);
%R tail(flights);
%R summary(flights);
 

Selection

In pandas in order to select multiple rows you need to use the []operator with the element-wise operators like & and |. If you don't use the element-wise operators you will get the following error: ValueError: The truth value of a Series is ambiguous. Another solution is to install the numexpr6 package and use the query() function.

dplyr instead provides the filter() function. Combined with the pipe operator %>% the code is incredibly readable in my opinion. Notice how repeating the dataframe variable in the boolean expression is not needed in this case.

Python R
df[bool expr with element-wise operators] df %>% filter(bool expr)
df.query('bool expr')  
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Python
 
# Simple filtering
flights[flights.month <= 3];
 
# Filtering with element-wise operators
flights[(flights.month >= 3) & (flights.month <= 6)];
 
# with numexpr
flights.query('month >= 3 & month <= 6');
 
 
%R flights %>% filter(month >= 3 & month <= 6);
 

Projection

You can use the projection operation to extract one (or more) columns from a dataframe. In Python you pass an array with the columns you are interested in to the DataFrame object. In dplyr the projection function is called select, inspired by SQL.

Python R
df[['col_1', 'col_2']] df %>% select(col_1, col_2)
 
1
2
3
4
5
6
# Python
flights[['year', 'month']];
 
 
%R flights %>% select(month, year);
 

Rename

The rename operation is used to simply rename a column of your dataframe keeping the content intact. In pandas you use the rename7function and you provide a dictionary. In R you use a comma separated list of assignments.

Python R
df.rename(columns={'col_name': 'col_new_name'}) df %>% rename(col_new_name = col_name)
 
1
2
3
4
5
6
# Python
flights.rename(columns={'month': 'TheMonth'});
 
 
%R flights %>% rename(TheMonth = month);
 

Union

The relational algebra uses set union, set difference, and Cartesian product from set theory, with the extra constraint that tables must be "compatible", i.e. they must have the same columns.

You can use the union in Pandas using the concat()8 operation. You need to take some extra care for indexes though and for that I'll forward you to the docs9.

In R you rely on the bind_rows10 operator.

Python R
concat([df_1, df_2]); rbind_list(df_1, df_2)
 
1
2
3
4
5
6
7
8
9
10
11
12
# Python
 
df_1 = flights.query('dep_time == 518');
df_2 = flights.query('dep_time == 517');
concat([df_1, df_2]);
 
%%R
sink("/dev/null")
df_1 = filter(flights, dep_time == 517);
df_2 = filter(flights, dep_time == 518);
bind_rows(df_1, df_2);
 

Difference

To the best of my knowledge there is no set difference operator in Python. In order to achieve the result we must rely on the select operator.

In dplyr there is a native operator setdiff that does exactly what we expect.

Python R
set_a[~set_a.column.isin(set_b.column)] set_a %>% setdiff(set_b)
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Python
 
set_a = flights.query('dep_time == 517 | dep_time == 518');
set_b = flights.query('dep_time == 518 | dep_time == 519');
 
selection = ~set_a.dep_time.isin(set_b.dep_time);
set_a[selection];
 
%%R
#sink(type="output")
#sink("/dev/null")
set_a = filter(flights, dep_time == 517 | dep_time == 518);
set_b = filter(flights, dep_time == 518 | dep_time == 519);
set_a %>% setdiff(set_b)
 

Cartesian product

You can use the cartesian product to combine two tables with a disjoint set of columns. In practice this is not a very common operation and as a result both libraries lack a pure cartesian product (in favour of the way more common join operator).

A simple trick to overcome this limitation is to create a temporary column first, perform the join and finally remove the temporary column. This can be done both in Python and R using the merge() andfull_join methods.

Python R
merge(...) with tmp column full_join(...) with tmp column
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# Python
 
df_1 = DataFrame({
        'name': ['Jack', 'Mario', 'Luigi']
    });
df_2 = DataFrame({
        'surname': ['Rossi', 'Verdi', 'Reacher']
    });
 
df_1['tmp'] = np.nan;
df_2['tmp'] = np.nan;
 
merge(df_1, df_2, on='tmp').drop('tmp', axis=1);
 
%%R
#sink(type="output")
sink("/dev/null")
df_1 = data.frame(
    name=c('Jack', 'Mario', 'Luigi'),
    stringsAsFactors=FALSE)
 
df_2 = data.frame(
    surname=c('Rossi', 'Verdi', 'Reacher'),
    stringsAsFactors=FALSE)
 
df_1$tmp = NA
df_2$tmp = NA
 
full_join(df_1, df_2, by="tmp") %>% select(-tmp)
 

Natural Join

If you are used to SQL you are definitely aware of what a join operation is. Given two dataframe R and S the result of the natural join is the set of all combinations of tuples in R and S that are equal on their common attribute names.

In Python you can rely on the very powerful merge11 command.
In R Dplyr you can use the full_join12 command.

Python R
merge(..., on="key", how="outer") full_join(..., by="key")
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
# Python
df_1 = DataFrame({
        'name': ['Jack', 'Mario', 'Luigi'],
        'department_id' : [30, 31, 31]
    });
df_2 = DataFrame({
        'department_name': ['Sales', 'Product', 'Finance'],
        'department_id' : [30, 31, 32]
    });
 
merge(df_1, df_2, on="department_id", how="outer");
 
%%R
#sink(type="output")
sink("/dev/null")
 
df_1 = data.frame(
    name=c('Jack', 'Mario', 'Luigi'),
    department_id=c(30, 31, 31),
    stringsAsFactors=FALSE)
 
df_2 = data.frame(
    department_name=c('Sales', 'Product', 'Finance'),
    department_id=c(30, 31, 32),
    stringsAsFactors=FALSE)
 
full_join(df_1, df_2, by="department_id")
 

Aggregations

An aggregate function is a function that takes the values of a certain column to form a single value of more significant meaning. Typical aggregate functions available in the most common SQL dialects include Average(), Count(), Maximum(), Median(), Minimum(), Mode(), Sum().

Both R and Python dataframes provides methods to extract this information. In this case I would say that Python handle missing values default better, whilst on R we have to provide na.rm = TRUE.

Python R
df.<column>.mean() summarise(df, test=mean(<column>, na.rm = TRUE))
df.<column>.median() summarise(df, test=median(<column>, na.rm = TRUE))
df.<column>.std() summarise(df, test=sd(<column>, na.rm = TRUE))
df.<column>.var() summarise(df, test=var(<column>, na.rm = TRUE))
df.<column>.min() summarise(df, test=min(<column>, na.rm = TRUE))
df.<column>.max() summarise(df, test=max(<column>, na.rm = TRUE))
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# Python
 
flights.dep_time.mean();
flights.dep_time.median();
flights.dep_time.std();
flights.dep_time.var();
flights.dep_time.min();
flights.dep_time.max();
flights.dep_time.mean();
 
%%R
#sink(type="output")
sink("/dev/null")
 
summarise(flights, test=mean(dep_time, na.rm = TRUE))
summarise(flights, test=median(dep_time, na.rm = TRUE))
summarise(flights, test=min(dep_time, na.rm = TRUE))
summarise(flights, test=max(dep_time, na.rm = TRUE))
summarise(flights, test=sd(dep_time, na.rm = TRUE))
summarise(flights, test=var(dep_time, na.rm = TRUE))
 

Group by

Aggregations become useful especially when used in conjunction with the group by operator. This way we are able to compute statistics for a number of group subsets with just one command.

Both Python and R provides the function to run a group by.

Python R
df.groupby('<column>') df %>% group_by(<column>)
 
1
2
3
4
5
6
7
8
9
10
11
12
13
# Python
 
# For any given day compute the mean of the flights departure time
flights.groupby('day').dep_time.mean();
 
%%R
#sink(type="output")
sink("/dev/null")
 
flights %>%
    group_by(day) %>%
    summarise(dep_time_mean=mean(dep_time, na.rm = TRUE))
 

Conclusion

I think the Pandas and Dplyr paradigms are very different between each other.

Pandas is more focused on object orientation and good defaults. Indexes are a first class entity and as a result some operations that you expect to be simple are instead quite difficult to grasp.

Conversely Dplyr is procedural. I love the pipe operator and manipulating my data feels incredibly smooth. The only sad note is that sometimes functions defaults are not that great. I haven't tested the speed in this blog post but I assume that since indexes are hidden in Dplyr the speed is probably much lower in general.

In conclusion I feel like Dplyr and R are the perfect tool for some early exploration of the data. But if you are serious about the code you are producing you should probably switch to Python to productionise your data analysis.

Let me know your approach in the comments!

References

    1. IEEE 2015 top programming languages
    2. Dplyr homepage
    3. Pandas homepage
    4. Relational Algebra
    5. NYC Flights 2013 dataset
    6. Numexpr python package
    7. pandas.DataFrame.rename
    8. Merging data frames in Panda
    9. Concatenating objects in Pandas
    10. Dplyr bind function
    11. Pandas merge function
    12. Dplyr documentation

Data manipulation primitives in R and Python的更多相关文章

  1. Best packages for data manipulation in R

    dplyr and data.table are amazing packages that make data manipulation in R fun. Both packages have t ...

  2. Data Manipulation with dplyr in R

    目录 select The filter and arrange verbs arrange filter Filtering and arranging Mutate The count verb ...

  3. The dplyr package has been updated with new data manipulation commands for filters, joins and set operations.(转)

    dplyr 0.4.0 January 9, 2015 in Uncategorized I’m very pleased to announce that dplyr 0.4.0 is now av ...

  4. R 调用 python

    上一篇说了python使用 rpy2 调用 R,这里介绍R如何调用python.R的强项在于统计方面,尤其是专业的统计分析,统计检验以及作图功能十分强大,但是在通用性方面,就远不如Python了,比如 ...

  5. R vs Python,数据分析中谁与争锋?

    R和Python两者谁更适合数据分析领域?在某些特定情况下谁会更有优势?还是一个天生在各方面都比另一个更好? 当我们想要选择一种编程语言进行数据分析时,相信大多数人都会想到R和Python——但是从这 ...

  6. 随机森林入门攻略(内含R、Python代码)

    随机森林入门攻略(内含R.Python代码) 简介 近年来,随机森林模型在界内的关注度与受欢迎程度有着显著的提升,这多半归功于它可以快速地被应用到几乎任何的数据科学问题中去,从而使人们能够高效快捷地获 ...

  7. 让R与Python共舞

    转载:http://ices01.sinaapp.com/?p=129      R(又称R语言)是一款开源的跨平台的数值统计和数值图形化展现 工具.通俗点说,R是用来做统计和画图的.R拥有自己的脚本 ...

  8. 决策树ID3原理及R语言python代码实现(西瓜书)

    决策树ID3原理及R语言python代码实现(西瓜书) 摘要: 决策树是机器学习中一种非常常见的分类与回归方法,可以认为是if-else结构的规则.分类决策树是由节点和有向边组成的树形结构,节点表示特 ...

  9. 做量化模型Matlab、R、Python、F#和C++到底选择哪一个?

    MATLAB是matrix&laboratory两个词的组合,意为矩阵工厂(矩阵实验室).是由美国mathworks公司发布的主要面对科学计算.可视化以及交互式程序设计的高科技计算环境.它将数 ...

随机推荐

  1. PHP 文件上传服务端及客户端配置参数说明

    文件上传服务器端配置: ·file_uploads = On, 支持HTTP上传 ·upload_tmp_dir = , 临时文件保存的目录 ·upload_max_filesize=2M, 允许上传 ...

  2. Android判断横屏竖屏代码

    // 判断Android当前的屏幕是横屏还是竖屏.横竖屏判断 if (this.getResources().getConfiguration().orientation == Configurati ...

  3. Windows7下CHM电子书打开不能正常显示内容

    Author:KillerLegend Date:2014.1.28 Welcome to my blog:http://www.cnblogs.com/killerlegend/ 今日下载一个CHM ...

  4. Mac上添加adb_usb.ini

    max上添加android驱动支持 用到的命令: 命令方式最简单,键入如下两行命令你就可以实现对文件的现实和隐藏功能了.这个时候肯定会有童鞋问:“在哪里敲命令呢?”,Launchpad——其他——终端 ...

  5. GUID,UUID

    <? class System { function currentTimeMillis() { list($usec, $sec) = explode(" ",microt ...

  6. SqlBulkCopy 插入100W条数据时 属性BatchSize的作用

    (1)100W条insert语句在一个连接内一句一句加 花了01:17:19.0542805 (2) SqlBulkCopy 插入100W条数据 设置BatchSize=500 耗时:00:03:29 ...

  7. C语言接口的写法(以toyls命令为例)

    #include <unistd.h> #include <stdio.h> #include <stdlib.h> #include <string.h&g ...

  8. DB2测试存储过程的原子性

    存储过程在运行过程中需要对其做异常处理.原子性等测试 下面是一个原子性测试案例 ===================================== 代码区域 ================= ...

  9. Linux下mysql自动备份

    #!/bin/bashDATE=`date +%Y-%m-%d-%H:%M -d -3minute`USER=rootPASSWORD=mayboBACKUP_DIR='/home/mysqlbak/ ...

  10. C#之玩转反射【转:http://www.cnblogs.com/yaozhenfa/p/CSharp_Reflection_1.html】

    前言 之所以要写这篇关于C#反射的随笔,起因有两个:   第一个是自己开发的网站需要用到   其次就是没看到这方面比较好的文章. 所以下定决心自己写一篇,废话不多说开始进入正题. 前期准备 在VS20 ...