MapReduce算法形式一:WordCount

这种形式可以做一些网站登陆次数,或者某个电商网站的商品销量啊诸如此类的,主要就是求和,但是求和之前还是要好好清洗数据的,以免数据缺省值太多,影响真实性。

废话不多说,上代码吧,我把注释一行行的都写了~~可可可可~

先封装了数据行的对象:

public class Log {
  private String time;
  private String UID;
  private String keyWord;
  private int rank;
  private int order;
  private String URL;

  public String getTime() {
    return time;
  }
  public void setTime(String time) {
    this.time = time;
  }
  public String getUID() {
    return UID;
  }
  public void setUID(String uID) {
    UID = uID;
  }
  public String getKeyWord() {
    return keyWord;
  }
  public void setKeyWord(String keyWord) {
    this.keyWord = keyWord;
  }
  public int getRank() {
    return rank;
  }
  public void setRank(int rank) {
    this.rank = rank;
  }
  public int getOrder() {
    return order;
  }
  public void setOrder(int order) {
    this.order = order;
  }
  public String getURL() {
    return URL;
  }
  public void setURL(String uRL) {
    URL = uRL;
  }

  public Log(String time, String uID, String keyWord, int rank, int order,String uRL) {
    super();
    this.time = time;
    this.UID = uID;
    this.keyWord = keyWord;
    this.rank = rank;
    this.order = order;
    this.URL = uRL;
  }

  public Log() {
    super();
  }

/*
* 对行记录日志信息进行封装成对象
* 并将对象返回
*/
  public static Log getInfo(String value){
    Log log = new Log();

    //将一条日志记录转换成一个数组
    String[] lines = value.toString().trim().split("\t");
    //判断行记录中间是否有缺省值
    if(lines.length == 6){
      //行记录封装
      log.setTime(lines[0].trim());
      log.setUID(lines[1].trim());
      log.setKeyWord(lines[2].trim());
      log.setRank(Integer.parseInt(lines[3].trim()));
      log.setOrder(Integer.parseInt(lines[4].trim()));
      log.setURL(lines[5].trim());
    }
      return log;
  }

}

mr中的代码:

public class PVSum {
/**案例一:WordCount
*
* 非空查询条数
* 不去重,直接统计总和即可
*
* 假设:
* 日志格式如下:(已经过清洗,以制表符分割)
* 20111230050630 时间time
* 2a12e06f50ad41063ed2b62bffac29ad 用户UID
* 361泰国电影 搜索的关键词keyword
* 5 rank搜索结果排序
* 8 order点击次数
* http://www.57ge.com/play/?play_2371_1_361.html 访问的URL
*
* @param args
* @throws Exception
*/
public static void main(String[] path) throws Exception {
  if(path.length != 2){
    System.out.println("please input full path!");
    System.exit(0);
  }

  Job job = Job.getInstance(new Configuration(), PVSum.class.getSimpleName());
  job.setJarByClass(PVSum.class);

  FileInputFormat.setInputPaths(job, new Path(path[0]));
  FileOutputFormat.setOutputPath(job, new Path(path[1]));

  job.setMapperClass(PVSumMap.class);
  job.setReducerClass(PVSumReduce.class);

  job.setOutputKeyClass(Text.class);
  job.setOutputValueClass(IntWritable.class);

  job.waitForCompletion(true);
}

public static class PVSumMap extends Mapper<LongWritable, Text, Text, IntWritable> {
  IntWritable one = new IntWritable(1);//记录数量,一条记录即为1
  Text text = new Text("非空关键词的PV访问量总计:");
  protected void map(LongWritable key, Text value,org.apache.hadoop.mapreduce.Mapper<LongWritable, Text, Text, IntWritable>.Context context)
            throws java.io.IOException, InterruptedException {
    //获取每条记录的对象
    Log log = Log.getInfo(value.toString().trim());
    //判断关键字是否为空
    if(log.getKeyWord().trim() != null && !log.getKeyWord().trim().equals("")){
      //写入数据
      context.write(text, one);
      //map : <非空关键词的PV访问量总计:, 1>
    }
  };
}

//shuffle : <非空关键词的PV访问量总计:, {1, 1, 1...}>

public static class PVSumReduce extends Reducer<Text, IntWritable, Text, IntWritable> {
  protected void reduce(Text key, java.lang.Iterable<IntWritable> values,

              org.apache.hadoop.mapreduce.Reducer<Text, IntWritable, Text, IntWritable>.Context context)

              throws java.io.IOException, InterruptedException {
      int sum = 0;//记录总条数
      for (IntWritable count : values) {
        sum += count.get();
      }
      context.write(key, new IntWritable(sum));
  };
}

}

MapReduce算法形式一:WordCount的更多相关文章

  1. MapReduce算法形式六:只有Map独自作战

    案例六:Map独自直接输出 之前一直没有用过这个map独自输出的模式,就算是输出一些简单的我也会经过一次reduce输出,但是,发现这个map输出的结果跟我预想的有点不一样,我一直以为shuffle的 ...

  2. MapReduce算法形式五:TOP—N

    案例五:TOP—N 这个问题比较常见,一般都用于求前几个或者后几个的问题,shuffle有一个默认的排序是正序的,但如果需要逆序的并且暂时还不知道如何重写shuffle的排序规则的时候就用以下方法就行 ...

  3. MapReduce算法形式四:mapjoin

    案例四:mapjoin(对个map共同输入,一个reduce) 这个方法主要解决的是,几个表之间的比较,类似于数据库的内外连接,还有一些左右连接之类的,简而言之就是,A表没有的B表有,B表有的A没有或 ...

  4. MapReduce算法形式三:cleanup

    案例三:cleanup 其实这个案例可以不用写这么复杂,不用cleanup也能写,但是为了,突显,突显,突显(重要的事说四遍)cleanup的重要性,琢磨了半天,恩,这样写既可以突显cleanup又显 ...

  5. MapReduce算法形式二:去重(HashSet)

    案例二:去重(shuffle/HashSet等方法)shuffle主要针对的是key去重HashSet主要针对values去重

  6. MapReduce算法形式二:去重(shuffle)

    案例二:去重(shuffle/HashSet等方法)shuffle主要针对的是key去重HashSet主要针对values去重

  7. hadoop笔记之MapReduce的应用案例(WordCount单词计数)

    MapReduce的应用案例(WordCount单词计数) MapReduce的应用案例(WordCount单词计数) 1. WordCount单词计数 作用: 计算文件中出现每个单词的频数 输入结果 ...

  8. 海量数据挖掘MMDS week6: MapReduce算法(进阶)

    http://blog.csdn.net/pipisorry/article/details/49445519 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...

  9. 如何简单解释 MapReduce算法

    原文地址:如何简单解释 MapReduce 算法 在Hackbright做导师期间,我被要求向技术背景有限的学生解释MapReduce算法,于是我想出了一个有趣的例子,用以阐释它是如何工作的. 例子 ...

随机推荐

  1. [BZOJ1604] [Usaco2008 Open]Cow Neighborhoods 奶牛的邻居(好题)

    传送门 良心题解 #include <set> #include <cstdio> #include <iostream> #include <algorit ...

  2. 史上最详细的linux关于connect: network is unreachable 问题的解决方案

    1.虚拟机常用连接网络方式有两种:桥接和NAT. 使用桥接模式:则保证虚拟机的网段与物理机的网段保持一致.如下: 虚拟机网卡配置: 物理机使用WiFi接入网络(我用的是WiFi,你们可能用的是有线道理 ...

  3. POJ Blue Jeans [枚举+KMP]

    传送门 F - Blue Jeans Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u ...

  4. Lighttpd 服务器的安装

    https://www.cnblogs.com/rongfengliang/articles/3503228.html

  5. Js 流程控制

    流程控制 顺序.分支.循环 顺序结构 代码一行一行从上往下执行并解析 分支结构 if语句 switch语句 if语句 单分支 if(条件表达式){ //语句块 } 含义:当条件表达式为真的时候就执行里 ...

  6. T1405 奶牛的旅行 codevs

    http://codevs.cn/problem/1405/ 时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题目描述 Description 农民John的农场 ...

  7. T3054 高精度练习-文件操作 codevs

    http://codevs.cn/problem/3054/ 题目描述 Description   输入一组数据,将每个数据加1后输出 输入描述 Input Description 输入数据:两行,第 ...

  8. Centos7安装完成后一些小优化

    1.修改ip地址.网关.主机名.DNS等 [root@localhost ~]# vi /etc/sysconfig/network-scripts/ifcfg-eth0 DEVICE=eth0 #网 ...

  9. linux crontab 定时器

    crontab -e 编辑定时器 crontab -l 显示当前定时器 crontab -r 删除当前定时器 格式 * * * * * command 第一列表示分钟1-59 第二列表示小时1-23 ...

  10. 【Java TCP/IP Socket】构建和解析自定义协议消息(含代码)

    在传输消息时,用Java内置的方法和工具确实很用,如:对象序列化,RMI远程调用等.但有时候,针对要传输的特定类型的数据,实现自己的方法可能更简单.容易或有效.下面给出一个实现了自定义构建和解析协议消 ...