SPOJ:Collecting Candies(不错的DP)
Jonathan Irvin Gunawan is a very handsome living person. You have to admit it to live in this world.
To become more handsome, Jonathan the Handsome have to collect candies (no relation, indeed). In front of him, there are N candies with different level of sweetness. Jonathan will collect the candies one by one. Jonathan can collect any number of candies, but he must collect the candy in the increasing order of level of sweetness (no two candies will have the same level of sweetness).
Every candy has their own color, which will be represented by a single integer between 0 and 109 inclusive.
If Jonathan collects the first candy, or a candy that has different color with the previous candy he take, he will get 1 point.
If Jonathan collects the candy that has the same color with the previous candy, he will get a combo. Combo-x means that he has collected x candies of the same color consecutively. In other words, if he collect a candy and get combo-(x-1) and he collect a candy with the same color again, he will get combo-(x). And then if he collects a candy with different color, the combo will vanish and back to combo- 1.
(Note : previous candy means the last candy he take)
Every time he get combo-x, he will get x points. Jonathan wants to count how many maximum total points he can get. You are a fan of Jonathan the Handsome have to help him.
Input
The first line consists of a single integer T, indicating the number of testcases.
For every testcase, the first line consists of a single integer N (1 ≤ N ≤ 1000).
The next line consists of N integers, representing the color of the candy given in the increasing level of sweetness, separated by a single space.
Output
For every case, output a single integer consist of the maximum total points Jonathan can get.
Example
Input:
2
4
1 1 2 1
4
1 2 3 1
Output:
6
4
Explanation
题意:N个数,取其子数列,使得总得分最高。得分定义如下:
对于某一个x
若前面有连续的c个x,则得分为c + 1
e.g.我选择下面这些数。
1 2 1 1 3 3 3 3 2 2 1 (取到的数列)
1 1 1 2 1 2 3 4 1 2 1 (得分分值)
思路:DP,先离散化。
状态F[i, j] ,i ——取到的最后一个数为i (i是离散化化后的数字),j ——前面有连续j个i ,F[i, j] ——这种情况下的最大得分
对于当前的数now
F[now, j + 1] = F[now, j] + j (1’)
F[now, 1] = max{F[i, j]} + 1 (i != now) (2’)
(感悟:平时的DP,即便是二维的DP,其状态都是一维的。所以想到还是有点难想到。读者有兴趣可以自己想试着想一下。
#include<bits/stdc++.h>
using namespace std;
const int maxn=;
int a[maxn],b[maxn],f[maxn][maxn],cnt,ans;
int main()
{
int T,N,pos,i,j;
scanf("%d",&T);
while(T--){
ans=; scanf("%d",&N);
for(i=;i<=N;i++) scanf("%d",&a[i]),b[i]=a[i];
sort(b+,b+N+);
cnt=unique(b+,b+N+)-(b+);
memset(f,,sizeof(f));
for(i=;i<=N;i++){
pos=lower_bound(b+,b+cnt+,a[i])-b;
for(j=i;j>=;j--) if(f[pos][j-]) f[pos][j]=max(f[pos][j],f[pos][j-]+j);
f[pos][]=ans+;
for(j=;j<=i;j++) ans=max(ans,f[pos][j]);
}
printf("%d\n",ans);
}
return ;
}
SPOJ:Collecting Candies(不错的DP)的更多相关文章
- SPOJ:Harbinger vs Sciencepal(分配问题&不错的DP&bitset优化)
Rainbow 6 is a very popular game in colleges. There are 2 teams, each having some members and the 2 ...
- spoj 1812 LCS2(SAM+DP)
[题目链接] http://www.spoj.com/problems/LCS2/en/ [题意] 求若干个串的最长公共子串. [思路] SAM+DP 先拿个串建个SAM,然后用后面的串匹配,每次将所 ...
- poj2096 Collecting Bugs(概率dp)
Collecting Bugs Time Limit: 10000MS Memory Limit: 64000K Total Submissions: 1792 Accepted: 832 C ...
- poj 2096 Collecting Bugs(期望 dp 概率 推导 分类讨论)
Description Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other ...
- Collecting Bugs poj2096 概率DP
Collecting Bugs Time Limit: 10000MS Me ...
- SPOJ BALNUM - Balanced Numbers - [数位DP][状态压缩]
题目链接:http://www.spoj.com/problems/BALNUM/en/ Time limit: 0.123s Source limit: 50000B Memory limit: 1 ...
- poj 2096 Collecting Bugs 【概率DP】【逆向递推求期望】
Collecting Bugs Time Limit: 10000MS Memory Limit: 64000K Total Submissions: 3523 Accepted: 1740 ...
- 【POJ 2096】Collecting Bugs 概率期望dp
题意 有s个系统,n种bug,小明每天找出一个bug,可能是任意一个系统的,可能是任意一种bug,即是某一系统的bug概率是1/s,是某一种bug概率是1/n. 求他找到s个系统的bug,n种bug, ...
- SPOJ 1435 Vertex Cover 树形DP
i 表示节点 i ,j=0表示不选择其父节点,j=1表示选择其父节点.f 为其父节点. 取 每个节点选择/不选择 两者中较小的那个. 一组数据: 151 21 31 41 1010 910 1112 ...
随机推荐
- zTree 用法小例
插件地址:链接:http://pan.baidu.com/s/1jHVtyZ0 密码:7kee <select id="getTree" resultType="j ...
- PAT (Advanced Level) 1087. All Roads Lead to Rome (30)
暴力DFS. #include<cstdio> #include<cstring> #include<cmath> #include<vector> # ...
- NOIP临考经验(转)
[COGS]NOIP临考经验 1. 提前15分钟入场,此时静坐调整心态,适当的深呼吸 2. 打开编辑器并调整为自己喜欢的界面 3. 熟悉文件目录,写好准确无误的代码模板 4. 压缩包或许还不能 ...
- MySQL---笔记之视图的使用详解
什么是视图 视图是从一个或多个表中导出来的表,是一种虚拟存在的表. 视图就像一个窗口,通过这个窗口可以看到系统专门提供的数据. 这样,用户可以不用看到整个数据库中的数据,而之关心对自己有用的数据. ...
- Mysql 之配置文件my.cnf
mysql配置文件为my.cnf,它所在位置根据安装时设定的. 当mysqld服务启动的时候,默认会按一定的顺序读取配置文件的. 1 2 3 [root@zhu2 ~]# /opt/mysql/lib ...
- poj1351Number of Locks(记忆化搜索)
题目链接: 传送门 思路: 这道题是维基百科上面的记忆化搜索的例题... 四维状态dp[maxn][5][2][5]分别表示第几根棒子,这根棒子的高度,是否达到题目的要求和使用不同棒子数.那么接下来就 ...
- FLEX接收外部参数 .
FLEX参数传递与FLASH有点不同 login..swf?name=aa&password=bb Flex上是这样接收参数的 myname=mx.core.Application.appli ...
- Access 执行查询时,抛出“标准表达式中数据类型不匹配”的错误
Access根据时间查询时应在查询条件前后加# SELECT COUNT(*) FROM [User] WHERE [CreateTime] > #{0}#
- hdu 4858 项目管理(vector模拟)
# include <stdio.h> # include <algorithm> # include <string.h> # include <vecto ...
- mac下配置eclipse的maven环境
转自:http://www.cnblogs.com/yqskj/archive/2013/03/30/2990292.html 1.下载maven的bin包,解压,配置到环境变量里面去 1). 首先到 ...