BZOJ2425 [HAOI2010]计数 【数位dp】
题目
你有一组非零数字(不一定唯一),你可以在其中插入任意个0,这样就可以产生无限个数。比如说给定{1,2},那么可以生成数字12,21,102,120,201,210,1002,1020,等等。
现在给定一个数,问在这个数之前有多少个数。(注意这个数不会有前导0).
输入格式
只有1行,为1个整数n.
输出格式
只有整数,表示N之前出现的数的个数。
输入样例
1020
输出样例
7
提示
n的长度不超过50,答案不超过\(2^{63}-1\).
题解
如果我们看做把0删除看做把0前导,那么问题就转化成了求所有数的排列中比当前数小的个数
我们只需统计当前\(i\)位相同,第\(i + 1\)位比原数小时有多少种情况
那么剩余的位就可以随便排列了,用带重复元素的排列\(\frac{N!}{n1!*n2!*n3!......}\)
当然可能会爆long long,可以对阶乘质因子分解来计算
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 55,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int num[maxn],n,isn[maxn];
LL a[10],fac[maxn],p[maxn],pi,ans;
void init(){
for (int i = 2; i < maxn; i++){
if (!isn[i]) p[++pi] = i;
for (int j = 1; j <= pi && i * p[j] < maxn; j++){
isn[i * p[j]] = true;
if (i % p[j] == 0) break;
}
}
}
LL Cal(LL x,LL t){
LL re = 0;
while (x / t) re += (x /= t);
return re;
}
LL qpow(LL a,LL b){
LL re = 1;
for (; b; b >>= 1,a = a * a)
if (b & 1) re = re * a;
return re;
}
LL cal(){
LL re = 1,tot = 0;
for (int i = 0; i < 10; i++) tot += a[i];
for (int i = 1; i <= pi && p[i] <= tot; i++){
LL cnt = Cal(tot,p[i]);
for (int j = 0; j < 10; j++) cnt -= Cal(a[j],p[i]);
re = re * qpow(p[i],cnt);
}
return re;
}
int main(){
init();
char c;
while ((c = getchar()) != EOF){
if (!isdigit(c)) break;
num[++n] = c - '0';
a[num[n]]++;
}
for (int i = 1; i <= n; i++){
for (int j = 0; j < num[i]; j++){
if (!a[j]) continue;
a[j]--;
ans += cal();
a[j]++;
}
a[num[i]]--;
}
cout << ans << endl;
return 0;
}
BZOJ2425 [HAOI2010]计数 【数位dp】的更多相关文章
- BZOJ2425:[HAOI2010]计数(数位DP)
Description 你有一组非零数字(不一定唯一),你可以在其中插入任意个0,这样就可以产生无限个数.比如说给定{1,2},那么可以生成数字12,21,102,120,201,210,1002,1 ...
- [HAOI2010]计数 数位DP+组合数
题面: 你有一组非零数字(不一定唯一),你可以在其中插入任意个0,这样就可以产生无限个数.比如说给定{1,2},那么可以生成数字12,21,102,120,201,210,1002,1020,等等. ...
- 【BZOJ-1833】count数字计数 数位DP
1833: [ZJOI2010]count 数字计数 Time Limit: 3 Sec Memory Limit: 64 MBSubmit: 2494 Solved: 1101[Submit][ ...
- bzoj1833: [ZJOI2010]count 数字计数(数位DP+记忆化搜索)
1833: [ZJOI2010]count 数字计数 题目:传送门 题解: 今天是躲不开各种恶心DP了??? %爆靖大佬啊!!! 据说是数位DP裸题...emmm学吧学吧 感觉记忆化搜索特别强: 定义 ...
- 【题解】P2602 数字计数 - 数位dp
P2602 [ZJOI2010]数字计数 题目描述 给定两个正整数 \(a\) 和 \(b\) ,求在 \([a,b]\) 中的所有整数中,每个数码(digit)各出现了多少次. 输入格式 输入文件中 ...
- BZOJ 1833 数字计数 数位DP
题目链接 做的第一道数位DP题,听说是最基础的模板题,但还是花了好长时间才写出来..... 想深入了解下数位DP的请点这里 先设dp数组dp[i][j][k]表示数位是i,以j开头的数k出现的次数 有 ...
- bzoj1833: [ZJOI2010]count 数字计数 数位dp
bzoj1833 Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包含一行两个整数a.b,含义如上所述. O ...
- NEUQ OJ 2004:追梦之人 (计数数位dp)
2004: 追梦之人 描述 题目描述: 为了纪念追梦人,粉丝们创造了一种新的数——“追梦数”.追梦数要满足以下两个条件:1.数字中不能出现“7”2.不能被7整除.比如:777和4396就不是追梦数,而 ...
- LightOJ 1140 计数/数位DP 入门
题意: 给出a,b求区间a,b内写下过多少个零 题解:计数问题一般都会牵扯到数位DP,DP我写的少,这道当作入门了,DFS写法有固定的模板可套用 dp[p][count] 代表在p位 且前面出现过co ...
- 1833: [ZJOI2010]count 数字计数——数位dp
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1833 省选之前来切一道裸的数位dp.. 题意 统计[a,b]中0~9每个数字出现的次数(不算 ...
随机推荐
- pingall脚本
p i n g a l l:一个按照/ e t c / h o s t s文件中的条目逐一p i n g所有主机的脚本 它能够按照/ e t c / h o s t s文件中的条目逐一p i n g所 ...
- Redis性能优化之redis.cnf配置参数
redis调优总结 1.相应的参数调优 加内存2.redis使用结构调优3.使用合理的数据类型说明:redis存储的数据为redis hash(字符映射表) 单key多字段结构. 1)调整配置文件中配 ...
- 洛谷 P2419 [USACO08JAN]牛大赛Cow Contest
题目背景 [Usaco2008 Jan] 题目描述 N (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, are participating in a p ...
- Hibernate学习之简单应用
前言:博主在学到Spring的时候,要开始做项目了,突然觉得好像有点虚,之前学过的Hibernate框架的简单应用好像又忘记了.所以返回来,做个小笔记. 简单来讲,Hibernate框架是利用对象-关 ...
- iOS 查看包架构信息
lipo -info libUMSocial_Sdk_4.2.a 查看包架构信息
- Tensorflow_入门学习_1
1.0 TensorFlow graphs Tensorflow是基于graph based computation: 如: a=(b+c)∗(c+2) 可分解为 d=b+c e=c+2 a=d∗e ...
- JSONP 跨域请求 - 获取JSON数据
如何用原生方式使用JSONP? 下边这一DEMO实际上是JSONP的简单表现形式,在客户端声明回调函数之后,客户端通过script标签向服务器跨域请求数据,然后服务端返回相应的数据并动态执行回调函数. ...
- Mac 下 Android Studio 安装
给大家介绍下 Mac Os 系统下的 Android Studio 的安装吧,二者步骤类似. 方法/步骤 1 首先下载 Mac 环境下的 Android Studio 的安装包,为 dmg 格式的 ...
- UNIX 进程间通讯(IPC)概念(Posix,System V IPC)
IPC(Inter-Process Communication,进程间通讯)可以有三种信息共享方式(随文件系统,随内核,随共享内存).(当然这里虽然说是进程间通讯,其实也是可以和线程相通的). 相对 ...
- shell脚本,每5个字符之间插入"|",行末不插入“|”。
文本aaaaabbbbbcccccdddd eeeeefffffkkkkkvvvv nnnnnggggg 希望得到的结果如下: aaaaa|bbbbb|ccccc|dddd eeeee|fffff|k ...