题目

你有一组非零数字(不一定唯一),你可以在其中插入任意个0,这样就可以产生无限个数。比如说给定{1,2},那么可以生成数字12,21,102,120,201,210,1002,1020,等等。

现在给定一个数,问在这个数之前有多少个数。(注意这个数不会有前导0).

输入格式

只有1行,为1个整数n.

输出格式

只有整数,表示N之前出现的数的个数。

输入样例

1020

输出样例

7

提示

n的长度不超过50,答案不超过\(2^{63}-1\).

题解

如果我们看做把0删除看做把0前导,那么问题就转化成了求所有数的排列中比当前数小的个数

我们只需统计当前\(i\)位相同,第\(i + 1\)位比原数小时有多少种情况

那么剩余的位就可以随便排列了,用带重复元素的排列\(\frac{N!}{n1!*n2!*n3!......}\)

当然可能会爆long long,可以对阶乘质因子分解来计算

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 55,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int num[maxn],n,isn[maxn];
LL a[10],fac[maxn],p[maxn],pi,ans;
void init(){
for (int i = 2; i < maxn; i++){
if (!isn[i]) p[++pi] = i;
for (int j = 1; j <= pi && i * p[j] < maxn; j++){
isn[i * p[j]] = true;
if (i % p[j] == 0) break;
}
}
}
LL Cal(LL x,LL t){
LL re = 0;
while (x / t) re += (x /= t);
return re;
}
LL qpow(LL a,LL b){
LL re = 1;
for (; b; b >>= 1,a = a * a)
if (b & 1) re = re * a;
return re;
}
LL cal(){
LL re = 1,tot = 0;
for (int i = 0; i < 10; i++) tot += a[i];
for (int i = 1; i <= pi && p[i] <= tot; i++){
LL cnt = Cal(tot,p[i]);
for (int j = 0; j < 10; j++) cnt -= Cal(a[j],p[i]);
re = re * qpow(p[i],cnt);
}
return re;
}
int main(){
init();
char c;
while ((c = getchar()) != EOF){
if (!isdigit(c)) break;
num[++n] = c - '0';
a[num[n]]++;
} for (int i = 1; i <= n; i++){
for (int j = 0; j < num[i]; j++){
if (!a[j]) continue;
a[j]--;
ans += cal();
a[j]++;
}
a[num[i]]--;
}
cout << ans << endl;
return 0;
}

BZOJ2425 [HAOI2010]计数 【数位dp】的更多相关文章

  1. BZOJ2425:[HAOI2010]计数(数位DP)

    Description 你有一组非零数字(不一定唯一),你可以在其中插入任意个0,这样就可以产生无限个数.比如说给定{1,2},那么可以生成数字12,21,102,120,201,210,1002,1 ...

  2. [HAOI2010]计数 数位DP+组合数

    题面: 你有一组非零数字(不一定唯一),你可以在其中插入任意个0,这样就可以产生无限个数.比如说给定{1,2},那么可以生成数字12,21,102,120,201,210,1002,1020,等等. ...

  3. 【BZOJ-1833】count数字计数 数位DP

    1833: [ZJOI2010]count 数字计数 Time Limit: 3 Sec  Memory Limit: 64 MBSubmit: 2494  Solved: 1101[Submit][ ...

  4. bzoj1833: [ZJOI2010]count 数字计数(数位DP+记忆化搜索)

    1833: [ZJOI2010]count 数字计数 题目:传送门 题解: 今天是躲不开各种恶心DP了??? %爆靖大佬啊!!! 据说是数位DP裸题...emmm学吧学吧 感觉记忆化搜索特别强: 定义 ...

  5. 【题解】P2602 数字计数 - 数位dp

    P2602 [ZJOI2010]数字计数 题目描述 给定两个正整数 \(a\) 和 \(b\) ,求在 \([a,b]\) 中的所有整数中,每个数码(digit)各出现了多少次. 输入格式 输入文件中 ...

  6. BZOJ 1833 数字计数 数位DP

    题目链接 做的第一道数位DP题,听说是最基础的模板题,但还是花了好长时间才写出来..... 想深入了解下数位DP的请点这里 先设dp数组dp[i][j][k]表示数位是i,以j开头的数k出现的次数 有 ...

  7. bzoj1833: [ZJOI2010]count 数字计数 数位dp

    bzoj1833 Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包含一行两个整数a.b,含义如上所述. O ...

  8. NEUQ OJ 2004:追梦之人 (计数数位dp)

    2004: 追梦之人 描述 题目描述: 为了纪念追梦人,粉丝们创造了一种新的数——“追梦数”.追梦数要满足以下两个条件:1.数字中不能出现“7”2.不能被7整除.比如:777和4396就不是追梦数,而 ...

  9. LightOJ 1140 计数/数位DP 入门

    题意: 给出a,b求区间a,b内写下过多少个零 题解:计数问题一般都会牵扯到数位DP,DP我写的少,这道当作入门了,DFS写法有固定的模板可套用 dp[p][count] 代表在p位 且前面出现过co ...

  10. 1833: [ZJOI2010]count 数字计数——数位dp

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1833 省选之前来切一道裸的数位dp.. 题意 统计[a,b]中0~9每个数字出现的次数(不算 ...

随机推荐

  1. 【Web应用-网络连接】关于 Azure Web 应用 4 分钟空闲连接的限制

    Azure Web 应用后台在处理耗时较长的请求时,并且在此期间,客户端和 Azure Web 应用没有数据交互,即 TCP 连接一直处于空闲状态,此种情况超过 4 分钟后,Azure Web 应用会 ...

  2. NBUT 1117 Kotiya's Incantation(字符输入处理)

    题意: 比较两个串,有三种情况:完全相同,可见字符相同,不同.每个字符串以'-'结尾.难点在输入. 思路: 字符逐个读入,直到'-'为止,读出两串就可以直接进行判断.如果不足两串则结束.输入时需要注意 ...

  3. COGS 1710. [POJ2406]字符串的幂

    ★☆   输入文件:powerstrings.in   输出文件:powerstrings.out   简单对比时间限制:3 s   内存限制:256 MB [题目描述] 对于给定的两个字符串a,b, ...

  4. 虚拟机ubuntu16.0 安装 mysql 主机配置访问

    在bantu服务器中安装如下命令 sudo apt-get install mysql-server    sudo apt-get install mysql-client安装成功之后 进入配置文件 ...

  5. 微信程序开发系列教程(四)使用微信API创建公众号自定义菜单

    大家可能经常看到一些微信公众号具有功能强大的自定义菜单,点击之后可以访问很多有用的功能. 这篇教程就教大家如何动手做一做. 这个教程最后实现的效果是:创建一个一级菜单"UI5", ...

  6. 2010: C语言实验——逆置正整数

    2010: C语言实验——逆置正整数 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 949  Solved: 691[Submit][Status][We ...

  7. BCB:AnsiString和String的区别

    AnsiString和String的区别.使用 本文转自:http://www.bianceng.cn/c/index.htm 16.C/C++语言在CB中的一些特定用法 2)AnsiString是从 ...

  8. 解决wpf popup控件遮挡其他程序的问题

    public class PopupNonTopmost : Popup { public static DependencyProperty TopmostProperty = Window.Top ...

  9. windows下使用gcc完成头文件和目标文件编译

    环境要求 安装了gcc win+r然后输入cmd , dos界面输入 gcc -v 查看有没有安装gcc 进入正题 新建 text.c文件键入如下代码: #include <stdio.h> ...

  10. BZOJ3301 P2524 UVA11525 算法解释康托展开

    这三个题的代码分别对应第二个第一个第三个 在刘汝佳蓝书上我遇到了这个康托展开题. 当时去了解了一下,发现很有意思 百度上的康托展开定义 原理介绍 编辑 康托展开运算 其中, 为整数,并且 . 的意义为 ...