3. 求和

难度级别:B; 运行时间限制:1000ms; 运行空间限制:51200KB; 代码长度限制:2000000B

题目描述

  一条狭长的纸带被均匀划分出了n个格子,格子编号从1到n。每个格子上都染了一种颜色colori用[1,m]当中的一个整数表示),并且写了一个数字numberi。
5
5
3
2
2
2
编号
1
2
3
4
5
6
 
定义一种特殊的三元组:(x, y, z),其中x,y,z都代表纸带上格子的编号,这里的三元组要求满足以下两个条件:
组要求满足以下两个条件:
    1.  xyz是整数,x<y<z,y-x=z-y
    2.  colorx=colorz
    满足上述条件的三元组的分数规定为(x+z)*(numberx+numberz)。整个纸带的分数规定为所有满足条件的三元组的分数的和。这个分数可能会很大,你只要输出整个纸带的分数除以10,007所得的余数即可。
 
【输入输出样例1】
 
sum.in
sum.out
6
2
       
82
5
5
3
2
2
2
2
2
1
1
2
1
 
 
【输入输出样例1 说明】 纸带如题目描述中的图所示。
所有满足条件的三元组为:(1,3,5),(4,5,6)。
所以纸带的分数为(1+5)* (5+2)+ (4+6) *(2+2)=42+40=82。
 
【输入输出样例2】
 
sum.in
sum.out
 

15 4

5 10 8 2 2 2 9 9 7 7 5 6 4 2 4

2 2 3 3 4 3 3 2 4 4 4 4 1 1 1

 
1388
 
【数据说明】
对于第 1 组至第 2 组数据, 1 ≤ n ≤ 100, 1 ≤ m ≤ 5;
对于第 3 组至第 4 组数据, 1 ≤ n ≤ 3000, 1 ≤ m ≤ 100;
对于第 5 组至第 6 组数据, 1 ≤ n ≤ 100000, 1 ≤ m ≤ 100000,且不存在出现次数超过 20 的颜色;
对 于 全 部 10 组 数 据 , 1 ≤ n ≤ 100000, 1 ≤ m ≤ 100000, 1 ≤ colori ≤ m,1≤ numberi ≤100000

输入

第一行是用一个空格隔开的两个正整数n和m,n表纸带上格子的个数,m表纸带上颜色的种类数。
第二行有n用空格隔开的正整数,第i数字numberi表纸带上编号为i格子上面写的数字。
第三行有n用空格隔开的正整数,第i数字colori表纸带上编号为i格子染的颜色。

输出

共一行,一个整数,表示所求的纸带分数除以10,007 所得的余数。

样例输入

6 2 5 5 3 2 2 2 2 2 1 1 2 1

样例输出

82
 
数学不好的人就别往下看了(友情提示)。
 
 
 
 
 
 
这题一看就是数学问题。求彩带分数和的式子需要运用一点数学思维化简(化简成计算机能快速算出的)
比如说:
  设同奇偶且同一种颜色的每个格子中的格子编号为a,b,c,d,....,分数为aa,bb,cc,dd,...
  由于这些格子中要两两计算分数并相加,因此我们来看看能不能把这个数学计算化简下
   
    有两个格子满足条件时的分数和是
        (a+b)*(aa+bb)
     (=0*(a*aa+b*bb)+(a+b)*(aa+bb))
    
    有三个格子满足条件时的分数和是
        (a+b)*(aa+bb)+(a+c)*(aa+cc)+(b+c)*(bb+cc)
       =a*aa+b*bb+c*cc+a*(aa+bb+cc)+b*(aa+bb+cc)+c*(aa+bb+cc) 【把上面那个式子的因式全都分解开,再合并一下,就能合成这样,没难度】
       =a*aa+b*bb+c*cc+(a+b+c)*(aa+bb+cc)
     (=1*(a*aa+b*bb+c*cc)+(a+b+c)*(aa+bb+cc))
    
    有四个格子满足条件时的分数和是
        (a+b)*(aa+bb)+(a+c)*(aa+cc)+(a+d)*(aa+dd)+(b+c)*(bb+cc)+(b+d)*(bb+dd)+(c+d)*(cc+dd)
       =2*(a*aa+b*bb+c*cc+d*dd)+a*(aa+bb+cc+dd)+b*(aa+bb+cc+dd)+c*(aa+bb+cc+dd)+d*(aa+bb+cc+dd)
       =2*(a*aa+b*bb+c*cc+d*dd)+(a+b+c+d)*(aa+bb+cc+dd)
 
  相信接下来大家已经发现规律了:
 
      正常的像(a+b+c+...)*(aa+bb+cc+...)这样的因式的增项就不说了,主要是注意每多一个格子满足条件时,每个格子就多加一次自身的编号和数字((?)*(a*aa+b*bb+...)
  因此用数(哲♂)学做法:
      设ci为格子颜色,j为0时表示这些三元组的x,z均为偶数,j为1时则均为奇数。
      设之前出现过的与之同奇偶p同颜色ci的格子数设为cnt[ci][p],
      格子序号和color[ci][0][p],格子数字和color[ci][1][p],格子序号与数字之积之和为color[ci][2][p]。
      当所有格子(所有颜色的格子)满足条件时,分数和为
         for(i=1;i<=m;i++)
             for(j=0;j<=1;j++){
                 sum+=color[i][0][j]*color[i][1][j]+((cnt[i][j]-2)*color[i][2][j]);
                 sum%=10007;

}

#include<iostream>
#include<cstring>
#define maxn 100005
using namespace std;
long long color[maxn][3][2],number[maxn],cnt[maxn][2],n,m,sum;
/*
之前出现过的与之同奇偶p同颜色ci的格子数设为cnt[ci][p],
格子序号和color[ci][0][p],格子数字和color[ci][1][p],格子序号与数字之积之和为color[ci][2][p]
*/
int main(){
int cor,i,j;
scanf("%lld%lld",&n,&m);
for(i=1;i<=n;i++) scanf("%lld",&number[i]);
for(i=1;i<=n;i++){
scanf("%d",&cor);
cnt[cor][i&1]++;
(color[cor][0][i&1]+=i)%=10007;
(color[cor][1][i&1]+=number[i])%=10007;
(color[cor][2][i&1]+=number[i]*i)%10007;
}
for(i=1;i<=m;i++)
for(j=0;j<=1;j++){
sum+=(color[i][0][j]*color[i][1][j])%10007+((cnt[i][j]-2)*color[i][2][j])%10007;
sum%=10007;
}
printf("%lld\n",sum);
system("pause");
return 0;
}

  我也查了网上别人的题解,我相信我这是最详细的了,因为我抠了一个多小时这题→_→

【noip】noip201503求和(题解可能不完美,但绝对详细)的更多相关文章

  1. 【题解】LOJ2462完美的集合(树DP 魔改Lucas)

    [题解]LOJ2462完美的集合(树DP 魔改Lucas) 省选模拟考这个??????????????????? 题目大意: 有一棵树,每个点有两个属性,一个是重量\(w_i\)一个是价值\(v_i\ ...

  2. 【noip】noip201503求和(市赛后公布)

    3. 求和 难度级别:B: 运行时间限制:1000ms: 运行空间限制:51200KB: 代码长度限制:2000000B 题目描述   一条狭长的纸带被均匀划分出了n个格子,格子编号从1到n.每个格子 ...

  3. HGOI NOIP模拟4 题解

    NOIP国庆模拟赛Day5 题解 T1 马里奥 题目描述 马里奥将要参加 NOIP 了,他现在在一片大陆上,这个大陆上有着许多浮空岛,并且其中一座浮空岛上有一个传送门,马里奥想要到达传送门从而前往 N ...

  4. 「题解」NOIP模拟测试题解乱写II(36)

    毕竟考得太频繁了于是不可能每次考试都写题解.(我解释个什么劲啊又没有人看) 甚至有的题目都没有改掉.跑过来写题解一方面是总结,另一方面也是放松了. NOIP模拟测试36 T1字符 这题我完全懵逼了.就 ...

  5. 「题解」NOIP模拟测试题解乱写I(29-31)

    NOIP模拟29(B) T1爬山 简单题,赛时找到了$O(1)$查询的规律于是切了. 从倍增LCA那里借鉴了一点东西:先将a.b抬到同一高度,然后再一起往上爬.所用的步数$×2$就是了. 抬升到同一高 ...

  6. 大家AK杯 灰天飞雁NOIP模拟赛题解/数据/标程

    数据 http://files.cnblogs.com/htfy/data.zip 简要题解 桌球碰撞 纯模拟,注意一开始就在袋口和v=0的情况.v和坐标可以是小数.为保险起见最好用extended/ ...

  7. noip借教室 题解

    题目描述 在大学期间,经常需要租借教室.大到院系举办活动,小到学习小组自习讨论,都需要向学校申请借教室.教室的大小功能不同,借教室人的身份不同,借教室的手续也不一样. 面对海量租借教室的信息,我们自然 ...

  8. NOIP 2018 day1 题解

    今年noip的题和去年绝对是比较坑的题了,但是打好的话就算是普通水准也能350分以上吧. t1: 很显然这是一个简单的dp即可. #include<iostream> #include&l ...

  9. Noip 2016 Day1 题解

    老师让我们刷历年真题, 然后漫不经心的说了一句:“你们就先做做noip2016 day1 吧” ...... 我还能说什么,,,,,老师你这是明摆着伤害我们啊2333333333 预计分数:100+2 ...

随机推荐

  1. win7 ghost 纯净版最新系统下载

    这个系统是WIN7系统GHOST版装机旗舰版 SP1,更新了系统补丁到2016-02(可通过微软漏洞扫描和卫士漏洞扫描),升级Internet Explorer为IE9,增加数款驱动的支持,支持最新的 ...

  2. mohout安装

    安装完成之后的环境变量的配置如下: JAVA_HOME=/usr/local/jdk1.8.0_144JRE_HOME=/usr/java/jdk1.8.0_144/jreCLASSPATH=.:$J ...

  3. webuploader项目中多图片上传实例

    <!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" content ...

  4. SVN中检出(check out) 跟导出(export) 的区别

    SVN中检出(check out) 和导出(export) 的区别?观点一:SVN是常用的一种常见的版本控制软件.SVN中检出(check   SVN中检出(check out) 和导出(export ...

  5. ios多线程之GCD

    介绍: Grand Central Dispatch 简称(GCD)是苹果公司开发的技术,以优化的应用程序支持多核心处理器和其他的对称多处理系统的系统.这建立在任务并行执行的线程池模式的基础上的.它首 ...

  6. 随机生成一份试卷,试卷的种类分为单选、多选、判断三种题型。nodejs6.0 mysql

    背景:从数据库中,随机生成一份试卷,试卷的种类分为单选.多选.判断三种题型. 首先我需要生成随机数id(在这之前我需要知道数据库中各个题型的题数,这样我才能设置随机数),并依据生成的随机数id,去查找 ...

  7. clock gate

    clock gate 这个专题,比较复杂设计DC  PT PR.下面仅仅从RTL行为级说明一下.

  8. Django ORM字段和字段参数

    Object Relational Mapping(ORM) ORM介绍 ORM概念 对象关系映射(Object Relational Mapping,简称ORM)模式是一种为了解决面向对象与关系数据 ...

  9. LeetCode(136) Single Number

    题目 Given an array of integers, every element appears twice except for one. Find that single one. Not ...

  10. 【LeetCode】Spiral Matrix(螺旋矩阵)

    这是LeetCode里的第54道题. 题目要求: 给定一个包含 m x n 个元素的矩阵(m 行, n 列),请按照顺时针螺旋顺序,返回矩阵中的所有元素. 示例 1: 输入: [ [ 1, 2, 3 ...