import java.util.ArrayDeque;

public class BinaryTree {
static class TreeNode{
int value;
TreeNode left;
TreeNode right; public TreeNode(int value){
this.value=value;
}
} TreeNode root; public BinaryTree(int[] array){
root=makeBinaryTreeByArray(array,1);
} /**
* 采用递归的方式创建一颗二叉树
* 传入的是二叉树的数组表示法
* 构造后是二叉树的二叉链表表示法
*/
public static TreeNode makeBinaryTreeByArray(int[] array,int index){
if(index<array.length){
int value=array[index];
if(value!=0){
TreeNode t=new TreeNode(value);
array[index]=0;
t.left=makeBinaryTreeByArray(array,index*2);
t.right=makeBinaryTreeByArray(array,index*2+1);
return t;
}
}
return null;
} /**
* 深度优先遍历,相当于先根遍历
* 采用非递归实现
* 需要辅助数据结构:栈
*/
public void depthOrderTraversal(){
if(root==null){
System.out.println("empty tree");
return;
}
ArrayDeque<TreeNode> stack=new ArrayDeque<TreeNode>();
stack.push(root);
while(stack.isEmpty()==false){
TreeNode node=stack.pop();
System.out.print(node.value+" ");
if(node.right!=null){
stack.push(node.right);
}
if(node.left!=null){
stack.push(node.left);
}
}
System.out.print("\n");
} /**
* 广度优先遍历
* 采用非递归实现
* 需要辅助数据结构:队列
*/
public void levelOrderTraversal(){
if(root==null){
System.out.println("empty tree");
return;
}
ArrayDeque<TreeNode> queue=new ArrayDeque<TreeNode>();
queue.add(root);
while(queue.isEmpty()==false){
TreeNode node=queue.remove();
System.out.print(node.value+" ");
if(node.left!=null){
queue.add(node.left);
}
if(node.right!=null){
queue.add(node.right);
}
}
System.out.print("\n");
} /**
* 13
* / \
* 65 5
* / \ \
* 97 25 37
* / /\ /
* 22 4 28 32
*/
public static void main(String[] args) {
int[] arr={0,13,65,5,97,25,0,37,22,0,4,28,0,0,32,0};
BinaryTree tree=new BinaryTree(arr);
tree.depthOrderTraversal();
tree.levelOrderTraversal();
}
}

树的横向遍历和纵向遍历

树的深度优先遍历和广度优先遍历的原理和java实现代码的更多相关文章

  1. 深度优先遍历 and 广度优先遍历

    深度优先遍历 and 广度优先遍历 遍历在前端的应用场景不多,多数是处理DOM节点数或者 深拷贝.下面笔者以深拷贝为例,简单说明一些这两种遍历.

  2. js实现深度优先遍历和广度优先遍历

    深度优先遍历和广度优先遍历 什么是深度优先和广度优先 其实简单来说 深度优先就是自上而下的遍历搜索 广度优先则是逐层遍历, 如下图所示 1.深度优先 2.广度优先 两者的区别 对于算法来说 无非就是时 ...

  3. js实现对树深度优先遍历与广度优先遍历

    深度优先与广度优先的定义 首先我们先要知道什么是深度优先什么是广度优先. 深度优先遍历是指从某个顶点出发,首先访问这个顶点,然后找出刚访问这个结点的第一个未被访问的邻结点,然后再以此邻结点为顶点,继续 ...

  4. C++ 二叉树深度优先遍历和广度优先遍历

    二叉树的创建代码==>C++ 创建和遍历二叉树 深度优先遍历:是沿着树的深度遍历树的节点,尽可能深的搜索树的分支. //深度优先遍历二叉树void depthFirstSearch(Tree r ...

  5. C++编程练习(9)----“图的存储结构以及图的遍历“(邻接矩阵、深度优先遍历、广度优先遍历)

    图的存储结构 1)邻接矩阵 用两个数组来表示图,一个一维数组存储图中顶点信息,一个二维数组(邻接矩阵)存储图中边或弧的信息. 2)邻接表 3)十字链表 4)邻接多重表 5)边集数组 本文只用代码实现用 ...

  6. python、java实现二叉树,细说二叉树添加节点、深度优先(先序、中序、后续)遍历 、广度优先 遍历算法

    数据结构可以说是编程的内功心法,掌握好数据结构真的非常重要.目前基本上流行的数据结构都是c和c++版本的,我最近在学习python,尝试着用python实现了二叉树的基本操作.写下一篇博文,总结一下, ...

  7. 二叉树的深度优先遍历与广度优先遍历 [ C++ 实现 ]

    深度优先搜索算法(Depth First Search),是搜索算法的一种.是沿着树的深度遍历树的节点,尽可能深的搜索树的分支. 当节点v的所有边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点 ...

  8. c++ 由无向图构造邻接表,实现深度优先遍历、广度优先遍历。

    /* 首先,根据用户输入的顶点总数和边数,构造无向图,然后以用户输入的顶点 为起始点,进行深度优先.广度优先搜索遍历,并输出遍历的结果. */ #include <stdlib.h> #i ...

  9. 邻接矩阵c源码(构造邻接矩阵,深度优先遍历,广度优先遍历,最小生成树prim,kruskal算法)

    matrix.c #include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include < ...

随机推荐

  1. 洛谷P3327 - [SDOI2015]约数个数和

    Portal Description 共\(T(T\leq5\times10^4)\)组数据.给出\(n,m(n,m\leq5\times10^4)\),求\[\sum_{i=1}^n\sum_{j= ...

  2. jQuary的相关动画效果

    第一种:该方法隐藏所有 <p> 元素: <html> <head> <script type="text/javascript" src= ...

  3. 请问 内网的 dns服务器 为什么和 外网的dns服务器 一样??

    公司内的内网使用192.169.X.X的内网地址,但是在DNS段填写的是210.34.X.X,显然这是一个公网固定IP,我不明白的是:为什么内部网客户端使用的DNS服务器是公网上的IP呢?内网客户端能 ...

  4. 栅格网络流(cogs 750)

    [问题描述] Bob 觉得一般图的最大流问题太难了,他不知道如何解决,于是他想尝试一个简单点的:栅格网络中的最大流问题,这个虽说简单了一点,但对 Bob 来说依旧太难,现在他有个麻烦需要你帮忙:给你一 ...

  5. Infinite monkey theorem(hdu 3689)

    题意:问随机生成一个长度为m(m<=1000)长度的字符串,出现某个子串s的概率是多少. /* KMP+DP 设f[i][j]表示A生成到第i位,此时B串匹配到第j位的概率. 转移方程为f[i+ ...

  6. c/s委托练习

    今天玩了玩C/S开发,也随便练习了很久不用的委托 父窗体中写的代码 #region 委托与事件传递    public delegate void TextChangedHandler(string ...

  7. 【BZOJ2002】弹飞绵羊(LCT)

    题意:给定一棵树,要求维护以下操作: 1.删除连接(x,y)的边 2.将(x,y)之间连边 3.询问某点子树大小 对于100%的数据n<=200000,m<=100000 思路:第一道有加 ...

  8. net3:Calendar控件的使用

    原文发布时间为:2008-07-29 -- 来源于本人的百度文章 [由搬家工具导入] using System;using System.Data;using System.Configuration ...

  9. MongoDB_起步

    MongoDB基本概念 <1> mogoDB是一个文档存储类型的nosql数据库,文档存储一般用类似json的格式存储,存储的内容是文档型的. 这样也就有机会对某些字段建立索引, < ...

  10. jstl 标签 的应用

    参考文档:http://www.yiibai.com/jsp/jstl_core_choose_tag.html 1.jstl中foreach序号 <c:forEach items=" ...