技术实践丨基于MindSpore的ResNet-50蘑菇“君”的识别应用体验
本文分享自华为云社区《基于MindSpore的ResNet-50蘑菇“君”的识别应用体验》,原文作者:Dasming。
摘要:基于华为MindSpore框架的ResNet-50网络模型,实现6714张共10类蘑菇图片的识别分类训练。

背靠全新的设计理念,华为云推出了 MindSpore深度学习实战营,帮助小白更快的上手高性能深度学习框架,快速训练ResNet-50,实现你的第一个手机App开发,学会智能新闻分类、篮球检测和「猜你喜欢」模型!
MindSpore深度学习实战营,通过 21天的合理课程安排,不仅提供目前大热的移动端部署介绍,还有紧跟时事的趣味实践,更有深度的底层开发讲解,让你从框架到算法到开发,都能一网打尽。
在MindSpore21天实战第三堂课,由王辉老师分享了基于MindSpore的ResNet-50的识别推理模型,如何应用在“蘑菇’君’是否有毒?”的检测场景。
ResNet之前的状况是:
CNN能够提取low/mid/high-level的特征,网络的层数越多,意味着能够提取到不同level的特征越丰富。并且,越深的网络提取的特征越抽象,越具有语义信息。而实际随着神经网络层数的增加,梯度消失或者爆炸导致深层网络很难训练。
对于该问题的解决方法是正则化初始化和中间的正则化层(Batch Normalization),这样的话可以训练几十层的网络。虽然通过上述方法能够训练了,但是又会出现另一个问题,就是退化问题,网络层数增加,但是在训练集上的准确率却饱和甚至下降了。
ResNet提出了残差结构,就是为了解决梯度消失、爆炸或者训练退化的问题。其经典结构如下图所示:

如下图所示,左侧是普通层,而右侧是ResNet;

如下图所示,左侧是普通层,而右侧是ResNet;
随着网络层数的大量增加,普通层的输出H(X)越来越难以学习。而ResNet跨过卷积层将输入X作为最终输出。F(X)被称为残差。
深度残差网络有着相对低的复杂度和更深的网络层数。曾获多项比赛的第一名。
ResNet-50中的50,指的是该网络的层数为50层。
本堂课的体验作业是基于华为MindSpore框架的ResNet-50网络模型,实现6714张共10类蘑菇图片的识别分类训练。算力是基于华为云ModelArts,网络存储使用华为OBS对象存储服务。大量图片上传OBS桶过程中,使用了OBS-browser-plus套件工具,设置好OBS登录权限和存储目录后,可以本地拖放目录操作,大量的数据文件可以进入队列自动上传。
基于1*Ascend910 CPU的算力,整个训练过程用时10.04minutes,数据集训练精度平均损失0.569,输出日志如下图所示。

对训练生成的模型,通过Eval测试“蘑菇超人”图片。

其分类结果为“霍氏粉褶伞,伞菌目,粉褶菌科……”,测试日志见下图。也是查了一下霍氏粉褶伞的图片,其他且不说,颜色相似度还是挺高的。

整个体验过程简单流畅,结合实例加深了对ResNet-50深度神经网络的了解。
技术实践丨基于MindSpore的ResNet-50蘑菇“君”的识别应用体验的更多相关文章
- 技术实践丨React Native 项目 Web 端同构
摘要:尽管 React Native 已经进入开源的第 6 个年头,距离发布 1.0 版本依旧是遥遥无期."Learn once, write anywhere",完全不影响 Re ...
- 【公开课】【阿里在线技术峰会】魏鹏:基于Java容器的多应用部署技术实践
对于公开课,可能目前用不上这些,但是往往能在以后想解决方案的时候帮助到我.以下是阿里对公开课的整理 摘要: 在首届阿里巴巴在线峰会上,阿里巴巴中间件技术部专家魏鹏为大家带来了题为<基于Java容 ...
- 从游击队到正规军(三):基于Go的马蜂窝旅游网分布式IM系统技术实践
本文由马蜂窝技术团队电商交易基础平台研发工程师"Anti Walker"原创分享. 一.引言 即时通讯(IM)功能对于电商平台来说非常重要,特别是旅游电商. 从商品复杂性来看,一个 ...
- 花椒直播基于golang的中台技术实践
https://github.com/gopherchina/conference/blob/master/2019/2.7%20花椒直播基于golang的中台技术实践%20-%20周洋.pdf 花椒 ...
- 技术干货 | 基于MindSpore更好的理解Focal Loss
[本期推荐专题]物联网从业人员必读:华为云专家为你详细解读LiteOS各模块开发及其实现原理. 摘要:Focal Loss的两个性质算是核心,其实就是用一个合适的函数去度量难分类和易分类样本对总的损失 ...
- 让AI简单且强大:深度学习引擎OneFlow技术实践
本文内容节选自由msup主办的第七届TOP100summit,北京一流科技有限公司首席科学家袁进辉(老师木)分享的<让AI简单且强大:深度学习引擎OneFlow背后的技术实践>实录. 北京 ...
- 基于MIndSpore框架的道路场景语义分割方法研究
基于MIndSpore框架的道路场景语义分割方法研究 概述 本文以华为最新国产深度学习框架Mindspore为基础,将城市道路下的实况图片解析作为任务背景,以复杂城市道路进行高精度的语义分割为任务目标 ...
- Redis数据库云端最佳技术实践
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由腾讯云数据库 TencentDB发表于云+社区专栏 邹鹏,腾讯高级工程师,腾讯云数据库Redis负责人,多年数据库.网络安全研发经验. ...
- 腾讯技术分享:GIF动图技术详解及手机QQ动态表情压缩技术实践
本文来自腾讯前端开发工程师“ wendygogogo”的技术分享,作者自评:“在Web前端摸爬滚打的码农一枚,对技术充满热情的菜鸟,致力为手Q的建设添砖加瓦.” 1.GIF格式的历史 GIF ( Gr ...
- 微信团队原创分享:iOS版微信的内存监控系统技术实践
本文来自微信开发团队yangyang的技术分享. 一.前言 FOOM(Foreground Out Of Memory),是指App在前台因消耗内存过多引起系统强杀.对用户而言,表现跟crash一样. ...
随机推荐
- SpringBoot自动配置原理解析
1: 什么是SpringBoot自动配置 首先介绍一下什么是SpringBoot,SpringBoost是基于Spring框架开发出来的功能更强大的Java程序开发框架,其最主要的特点是:能使程序开发 ...
- FWT & FMT(位运算卷积)学习笔记
它们两个的全名叫 快速沃尔什变换(FWT) 和 快速莫比乌斯变换(FMT),用来在 \(O(n\log n)\) 时间复杂度内求位运算卷积. 因为 FMT 能解决的问题是 FWT 的子集,所以这里不讲 ...
- 《HelloGitHub》第 91 期
兴趣是最好的老师,HelloGitHub 让你对编程感兴趣! 简介 HelloGitHub 分享 GitHub 上有趣.入门级的开源项目. https://github.com/521xueweiha ...
- QPixmap、QIcon和QImage
QPixmap依赖于硬件,QImage不依赖于硬件.QPixmap主要是用于绘图,针对屏幕显示而最佳化设计,QImage主要是为图像I/O.图片访问和像素修改而设计的. 当图片小的情况下,直接用QPi ...
- springMVC---GET、POST原理
对于 java 程序员来说,特别是遵循 restful 风格的公司,controller 层用得最多的就是 下面这几个注解了: @RequestMapping @PostMapping @GetMap ...
- 总结--flask部分
Flask框架的诞生: Flask诞生于2010年,是Armin ronacher(人名)用Python语言基于Werkzeug工具箱编写的轻量级Web开发框架. Flask本身相当于一个内核,其他几 ...
- 【封装】Splay
注意确保操作合法性,否则可能陷入死循环 以点权作为排序依据 struct Splay{ #define ls p[u].son[0] #define rs p[u].son[1] #define ma ...
- python的列表、元组
列表(list):是Python中最常用的数据类型之一,字符串里面包含元素的是 一个个的字符,并且字符串是不可能更改的,然而列表不一样,他的每个元素都 可以是任何python类型,而且是可以被更改的 ...
- 【Python】【OpenCV】【NumPy】图像和原始字节的转换
学习完基础的图像算法,开始接触OpenCV学习: 灰度图中,一个像素点上的灰度级需要一个字节(byte,2^8,8 bit)进行存储,此时的灰度图是二维的.而当我们需要转换为彩色图时,即三维,便会产生 ...
- iMessage群发,iMessage群发基础知识,iMessage群发源代码分享
在当今的数字化时代,即时通讯已经成为我们日常生活和工作中不可或缺的一部分,其中,苹果的iMessage服务因其出色的用户体验和无缝的设备间同步而备受用户喜爱. 然而,你是否想过如何利用iMessage ...