【题解】 bzoj1875: [SDOI2009]HH去散步 (动态规划+矩阵乘法)
Solution:
- 看到这道题,看的出是个dp,每个点\(t\)时刻到达的方案数等于\(t-1\)到连过来的点方案数之和
- 但又因为题目有要求不能走一样的边回去不是说不能回到之前那个点,而是不能走一样的边
- 又因为\(t\)很大,每次我们的都是做的重复的操作,我们就可以想到矩阵快速幂
- 为了保证不走重边回去,我们就可以用一个骚操作,把边化作点,然后双向边可以看做两条单向边,然后把每条单向边看做节点,连向所(这条边连向的节点)连出去的边。但是不连这条边的反向边,这样就可以保证不走一样的路回去了(超级机智)

如上图的\(1\)号边连向\(2\)号边,我们就可以把这个存在矩阵里面了 - 然后来一遍矩阵快速幂就好了,注意是\(t-1\)次,因为最后一次没走到,是到边上,没有回到\(B\)点
- 初始矩阵是把\(A\)点所有连出去的边\(+1\),然后把初始矩阵乘以快速幂后的矩阵,\(ans\)就是最后得到矩阵中所有连向\(B\)边上存的值和
- 丢一个我觉得讲的很清楚的博客
Attention:
- 会有重复边,所以矩阵里面是\(+1\),不是直接赋值为\(1\)
- 不能走一样的路回去,可以走另一条路回到先前的点
Code:
//It is coded by Ning_Mew on 5.10
#include<bits/stdc++.h>
#define IL inline
using namespace std;
const int maxn=125,MOD=45989;
int n,m,t,A,B,out=0;
struct Blc{
int a[maxn][maxn];
Blc(){memset(a,0,sizeof(a));}
}bas;
int head[maxn],cnt=0;
struct Edge{
int nxt,to;
}edge[maxn];
void add(int from,int to){
edge[++cnt].nxt=head[from];edge[cnt].to=to;head[from]=cnt;
}
IL int o(int x){if(x%2)return x+1;return x-1;}
IL Blc X(Blc x,Blc y){
Blc ans;
for(int i=1;i<=2*m;i++){
for(int j=1;j<=2*m;j++){
for(int k=1;k<=2*m;k++){
ans.a[i][j]+=x.a[i][k]*y.a[k][j]%MOD;
ans.a[i][j]%=MOD;
}
}
}return ans;
}
IL Blc q_pow(Blc x,int s){
Blc ans=bas;
while(s){
if(s%2)ans=X(ans,x);
x=X(x,x);
s=s/2;
}return ans;
}
int main(){
scanf("%d%d%d%d%d",&n,&m,&t,&A,&B);
for(int i=1;i<=m;i++){
int x,y;scanf("%d%d",&x,&y);
add(x,y);add(y,x);
}
Blc box;
for(int u=0;u<n;u++){
for(int i=head[u];i!=0;i=edge[i].nxt){
int v=edge[i].to;
for(int ii=head[v];ii!=0;ii=edge[ii].nxt){
//cout<<"pr:"<<i<<' '<<ii<<endl;
if(i==o(ii))continue;
bas.a[i][ii]++;
}
}
}
//pr(bas);
for(int i=head[A];i!=0;i=edge[i].nxt){box.a[1][i]++;}
Blc ans=q_pow(bas,t-2);
ans=X(box,ans);
for(int i=1;i<=2*m;i++){
if(edge[i].to==B){out=(out+ans.a[1][i])%MOD;}
}
//cout<<endl;pr(ans);
printf("%d\n",out);
return 0;
}
【题解】 bzoj1875: [SDOI2009]HH去散步 (动态规划+矩阵乘法)的更多相关文章
- BZOJ 1875 [SDOI2009]HH去散步 ——动态规划 矩阵乘法
发现t非常大,所以大概就是快速幂一类的问题了, 然后根据k^3logn算了算,发现k大约是边数的时候复杂度比较合适. 发现比较麻烦的就是前驱的记录,所以直接把边看做点,不能走反向边,但是可以走重边,然 ...
- BZOJ_1875_[SDOI2009]HH去散步_矩阵乘法
BZOJ_1875_[SDOI2009]HH去散步_矩阵乘法 Description HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但 是同时H ...
- [难题题解] [BZOJ1875] [SDOI2009] HH去散步
题目H有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走回. 又因为HH是个喜欢变化的人 ...
- 1875. [SDOI2009]HH去散步【矩阵乘法】
Description HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但 是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走回. 又 ...
- BZOJ 1875: [SDOI2009]HH去散步(矩阵乘法)
首先,题意就把我们引向了矩阵乘法,注意边长m<=60,那么就按边建图,变成一个120个点的图,然后乱搞就行了。 PS:WA了N久改了3次终于A了QAQ CODE: #include<cst ...
- [SDOI2009]HH去散步 「矩阵乘法计数」
计数问题也许可以转化为矩阵乘法形式 比如若该题没有不能在一条边上重复走的条件限制,那么直接将邻接矩阵转化为矩阵乘法即可 故 矩阵乘法计数 对于计数问题,若可以将 \(n\) 个点表示成 \(n \ti ...
- [bzoj1875][SDOI2009] HH去散步 [dp+矩阵快速幂]
题面 传送门 正文 其实就是让你求有多少条长度为t的路径,但是有一个特殊条件:不能走过一条边以后又立刻反着走一次(如果两次经过同意条边中间隔了别的边是可以的) 如果没有这个特殊条件,我们很容易想到dp ...
- BZOJ.1875.[SDOI2009]HH去散步(DP 矩阵乘法)
题目链接 比较容易想到用f[i][j]表示走了i步后到达j点的方案数,但是题目要求不能走上一条走过的边 如果这样表示是不好转移的 可以考虑边,f[i][j]表示走了i步后到达第j条边的方案数,那么有 ...
- BZOJ-1875 HH去散步 DP+矩阵乘法快速幂
1875: [SDOI2009]HH去散步 Time Limit: 20 Sec Memory Limit: 64 MB Submit: 1196 Solved: 553 [Submit][Statu ...
- BZOJ 1875: [SDOI2009]HH去散步( dp + 矩阵快速幂 )
把双向边拆成2条单向边, 用边来转移...然后矩阵乘法+快速幂优化 ------------------------------------------------------------------ ...
随机推荐
- 3D Touch开发技巧的笔记
iPhone6s以及iPhone6s plus搭载iOS9,有一个新功能叫做3D Touch,这个功能有很大的用处,关键是要会用,这给交互方式又多了一个新的选择和思考,比如说游戏中的额外控制选项.绘图 ...
- 在AspNetCore 中 使用Redis实现分布式缓存 (转载)
文章概念描述 分布式缓存描述:分布式缓存重点是在分布式上,相信大家接触过的分布式有很多中,像分布式开发,分布式部署,分布式锁.事物.系统 等有很多.使我们对分布式本身就有一个很明确的认识,分布式就是有 ...
- 2017-2018-2 20155315《网络对抗技术》Exp6 :信息搜集与漏洞扫描
实验目的 进行信息搜集的工作,为实战做准备 教程 实验内容 外围信息搜集 NMAP OpenVAS 实验步骤 (一)各种搜索技巧的应用 实战的前提是进行信息搜索.当我们想要有针对地进行操作的时候,就要 ...
- 20155337《网络对抗》Exp5 MSF基础应用
20155337<网络对抗>Exp5 MSF基础应用 实践目标 本实践目标是掌握metasploit的基本应用方式,重点常用的三种攻击方式的思路.具体需要完成: 1.1一个主动攻击实践,如 ...
- python 画圆
import numpy as np import matplotlib.pyplot as plt # ========================================== # 圆的 ...
- libgdx学习记录12——圆角矩形CircleRect
libgdx提供了ShapeRenderer这个工具,用它可以画点.画线.画圆.画矩形.画椭圆.画扇形,但是没有提供画圆角矩形的方法. 刚开始自己尝试分成8端,4端画直线,4端画扇形,发现多了半径几部 ...
- Asp.Net_<asp:RadioButtonList
<asp:RadioButtonList runat="server" ID="RadioButtonList1" RepeatDirection ...
- LintCode——旋转字符串
描述:给定一个字符串和一个偏移量,根据偏移量旋转字符串(从左向右旋转) 样例:对于字符串 "abcdefg" offset=0 => "abcdefg&qu ...
- Async 异步转同步详细流程解释
安装 npm install async --save 地址 https://github.com/caolan/async Async的内容主要分为三部分 流程控制: 简化九种常见的流程的处理 ...
- ubuntu 下配置 开发环境
1. apache: sudo apt-get install apache2 安装好输入网址测试所否成功: http://localhost 2. mongo 已经安装好了 版本:2.4.8 ref ...