hdu 5831 Rikka with Parenthesis II 线段树
Rikka with Parenthesis II
题目连接:
http://acm.hdu.edu.cn/showproblem.php?pid=5831
Description
As we know, Rikka is poor at math. Yuta is worrying about this situation, so he gives Rikka some math tasks to practice. There is one of them:
Correct parentheses sequences can be defined recursively as follows:
1.The empty string "" is a correct sequence.
2.If "X" and "Y" are correct sequences, then "XY" (the concatenation of X and Y) is a correct sequence.
3.If "X" is a correct sequence, then "(X)" is a correct sequence.
Each correct parentheses sequence can be derived using the above rules.
Examples of correct parentheses sequences include "", "()", "()()()", "(()())", and "(((())))".
Now Yuta has a parentheses sequence S, and he wants Rikka to choose two different position i,j and swap Si,Sj.
Rikka likes correct parentheses sequence. So she wants to know if she can change S to a correct parentheses sequence after this operation.
It is too difficult for Rikka. Can you help her?
Input
The first line contains a number t(1<=t<=1000), the number of the testcases. And there are no more then 10 testcases with n>100
For each testcase, the first line contains an integers n(1<=n<=100000), the length of S. And the second line contains a string of length S which only contains ‘(’ and ‘)’.
Output
For each testcase, print "Yes" or "No" in a line.
Sample Input
3
4
())(
4
()()
6
)))(((
Sample Output
Yes
Yes
No
Hint
题意
给你一个括号序列,你必须交换俩括号位置,问你可以可以使他合法。
题解:
哎呀,好气啊,感觉只有我们队是用线段树去模拟交换的……
最优情况下一定交换第一个右括号和最后一个左括号,交换后判断一下即可。 时间复杂度 O(n)O(n)
代码
#include <bits/stdc++.h>
#define rep(a,b,c) for(int (a)=(b);(a)<=(c);++(a))
#define drep(a,b,c) for(int (a)=(b);(a)>=(c);--(a))
#define pb push_back
#define mp make_pair
#define sf scanf
#define pf printf
#define two(x) (1<<(x))
#define clr(x,y) memset((x),(y),sizeof((x)))
#define dbg(x) cout << #x << "=" << x << endl;
const int mod = 1e9 + 7;
int mul(int x,int y){return 1LL*x*y%mod;}
int qpow(int x , int y){int res=1;while(y){if(y&1) res=mul(res,x) ; y>>=1 ; x=mul(x,x);} return res;}
inline int read(){int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}return x*f;}
using namespace std;
const int maxn = 100000 + 150;
int len,prefix[maxn],lstid;
char str[maxn];
struct Sgtree{
struct node{
int l , r , lzy , mi ;
void Update( int v ){
lzy += v;
mi += v;
}
}tree[maxn << 2];
void Build( int l , int r , int o ){
tree[o].l = l , tree[o].r = r , tree[o].lzy = tree[o].mi = 0;
if( r > l ){
int mid = l + r >> 1;
Build( l , mid , o << 1 );
Build( mid + 1 , r , o << 1 | 1 );
Maintain( o );
}else{
if( l == len ) lstid = o;
tree[o].mi = prefix[l];
}
}
int query( int x , int o ){
int l = tree[o].l , r = tree[o].r;
if( l == r ) return tree[o].mi;
else{
int mid = l + r >> 1 , rs ;
ReleaseLabel(o);
if( x <= mid ) rs = query( x , o << 1 );
else rs = query( x , o << 1 | 1 );
Maintain(o);
return rs;
}
}
void Maintain( int o ){
tree[o].mi = min( tree[o << 1].mi , tree[o << 1 | 1 ].mi );
}
void ReleaseLabel( int o ){
if( tree[o].lzy ){
tree[o << 1].Update( tree[o].lzy );
tree[o << 1 | 1].Update( tree[o].lzy );
}
tree[o].lzy = 0;
}
void Modify( int ql , int qr , int y , int o ){
int l = tree[o].l , r = tree[o].r;
if( ql <= l && r <= qr ) tree[o].Update( y );
else{
int mid = l + r >> 1;
ReleaseLabel( o );
if( ql <= mid ) Modify( ql , qr , y , o << 1 );
if( qr > mid ) Modify( ql , qr , y , o << 1 | 1 );
Maintain( o );
}
}
int Search_First( int x , int o ){
int l = tree[o].l , r = tree[o].r;
if( l == r ){
if( tree[o].mi < 0 ) return l;
return -1;
}
int mid = l + r >> 1 , rs = -1;
ReleaseLabel( o );
if( tree[o << 1].mi < 0 ) rs = Search_First( x , o << 1 );
if( rs == -1 && x > mid && tree[o << 1 | 1].mi < 0 ) rs = Search_First( x , o << 1 | 1 );
Maintain( o );
return rs;
}
}Sgtree;
bool solve(){
rep(i,1,len) if(str[i]=='(' && i > 1){
int go = Sgtree.Search_First( i - 1 , 1 );
if( go != -1 ){
Sgtree.Modify( go , i - 1 , 2 , 1 );
if( Sgtree.tree[1].mi == 0 && Sgtree.query(len,1) == 0 ) return true;
Sgtree.Modify( go , i - 1 , -2 , 1 );
}
}
return false;
}
int main(int argc,char *argv[]){
int T=read();
while(T--){
len=read();
sf("%s",str+1);
int ar = 0 , ok = 1;
rep(i,1,len){
prefix[i] = prefix[i - 1];
if(str[i]=='('){
++ prefix[i];
++ ar;
}
else{
if( ar == 0 ) ok = 0;
-- ar;
-- prefix[i];
}
}
Sgtree.Build(1,len,1);
if( ar != 0 ) ok = 0;
if( ok ){
if( len == 2 ) pf("No\n");
else pf("Yes\n");
}else{
bool result = solve();
if( result == true ) printf("Yes\n");
else printf("No\n");
}
}
return 0;
}
hdu 5831 Rikka with Parenthesis II 线段树的更多相关文章
- HDU 5831 Rikka with Parenthesis II(六花与括号II)
31 Rikka with Parenthesis II (六花与括号II) Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536 ...
- HDU 5831 Rikka with Parenthesis II (栈+模拟)
Rikka with Parenthesis II 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5831 Description As we kno ...
- HDU 5831 Rikka with Parenthesis II (贪心)
Rikka with Parenthesis II Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Jav ...
- hdu 5831 Rikka with Parenthesis II 括号匹配+交换
Rikka with Parenthesis II Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Jav ...
- HDU 5831 Rikka with Parenthesis II (贪心) -2016杭电多校联合第8场
题目:传送门. 题意:T组数据,每组给定一个长度n,随后给定一个长度为n的字符串,字符串只包含'('或')',随后交换其中两个位置,必须交换一次也只能交换一次,问能否构成一个合法的括号匹配,就是()( ...
- HDU 5831 Rikka with Parenthesis II
如果左括号数量和右括号数量不等,输出No 进行一次匹配,看匹配完之后栈中还有多少元素: 如果n=2,并且栈中无元素,说明是()的情况,输出No 如果n=2,并且栈中有元素,说明是)(的情况,输出Yes ...
- HDU 5831 Rikka with Parenthesis II ——(括号匹配问题)
用一个temp变量,每次出现左括号,+1,右括号,-1:用ans来记录出现的最小的值,很显然最终temp不等于0或者ans比-2小都是不可以的.-2是可以的,因为:“))((”可以把最左边的和最右边的 ...
- HDU 5828 Rikka with Sequence (线段树)
Rikka with Sequence 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5828 Description As we know, Rik ...
- HDU 5828 Rikka with Sequence(线段树)
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5828 [题目大意] 给出一个数列,要求支持区间加法,区间开方和区间和查询操作. [题解] 考虑开方 ...
随机推荐
- Codeforces 932 E. Team Work(组合数学)
http://codeforces.com/contest/932/problem/E 题意: 可以看做 有n种小球,每种小球有无限个,先从中选出x种,再在这x种小球中任选k个小球的方案数 选出的 ...
- H5 Day2 练习
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- 获取SQL Server数据库中的表和字段描述
获取所有dbo表的扩展属性: SELECT * FROM fn_listextendedproperty (NULL, 'schema', 'dbo', 'table', default, NULL, ...
- swift相关文档
swift官方文档 swift官方文档 https://itunes.apple.com/cn/book/swift-programming-language/id881256329?mt=11 sw ...
- Tensorflow数据读取的方式
深度学习既然是基于数据的方法,先不管多抽象,那总归是有读取数据的方法的吧,这里的数据应该是一个统称,包含我们讲的数据集和变量tensor. tf读取数据一共有3种方法: 供给数据(Feeding): ...
- Python实现网页截图(PyQT5)
方案说明 功能要求:实现网页加载后将页面截取成长图片涉及模块:PyQT5 PIL逻辑说明: 1:完成窗口设置,利用PyQT5 QWebEngineView加载网页地址,待网页加载完成后,调用check ...
- Java内存模型-锁的内存语义
一 引言 在说volatile的内存语义时,讲过这样一句话:想要理解透volatile特性有一个很好的方法,就是把对volatile变量的单个读/写,看成是使用同一个锁对这些单个读/写操作做了同步.所 ...
- 【API】注册表编程基础-RegCreateKeyEx、RegSetValueEx
1.环境: 操作系统:Windows 10 x64 编译器:VS2015 2.关键函数 LONG WINAPI RegCreateKeyEx( _In_ HKEY hKey, _In_ LPCTSTR ...
- 关于Mysql5.6半同步主从复制的开启方法【转】
介绍 先了解一下mysql的主从复制是什么回事,我们都知道,mysql主从复制是基于binlog的复制方式,而mysql默认的主从复制方式,其实是异步复制. 主库实际上并不关心从库是否把数据拉完没有, ...
- 网络抓包神器-Charles使用指南
http://blog.csdn.net/liulanghk/article/details/46342205 目录 概述 安装 显示模式 PC端抓包 移动应用抓包 其他技能 charles使用问题汇 ...