一本通1625【例 1】反素数 Antiprime
反素数 Antiprime
题目描述
原题来自:POI 2001
如果一个大于等于 1 的正整数 n,满足所有小于 n 且大于等于 1 的所有正整数的约数个数都小于 n 的约数个数,则 n 是一个反素数。譬如:1, 2, 4, 6, 12, 24,它们都是反素数。
请你计算不大于 n 的最大反素数。
输入格式
一行一个正整数 n。
输出格式
只包含一个整数,即不大于 n 的最大反素数。
样例
样例输入
1000
样例输出
840
数据范围与提示
对于 10% 的数据,1≤n≤103;
对于 40% 的数据,1≤n≤106;
对于 100% 的数据,1≤n≤2×109。
sol:题意有点烦,其实就是求不超过n的约数个数最多的最小的数
可以只用2,3,5,7,11,13,17,19,23,29,31爆搜出这个数
这个数就是2t1*3t2*5t3*~~~*31t10,且t1>=t2>=t3>=~~~>=t10
好像dfs挺快的??
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
inline ll read()
{
ll s=;
bool f=;
char ch=' ';
while(!isdigit(ch))
{
f|=(ch=='-'); ch=getchar();
}
while(isdigit(ch))
{
s=(s<<)+(s<<)+(ch^); ch=getchar();
}
return (f)?(-s):(s);
}
#define R(x) x=read()
inline void write(ll x)
{
if(x<)
{
putchar('-'); x=-x;
}
if(x<)
{
putchar(x+''); return;
}
write(x/);
putchar((x%)+'');
return;
}
#define W(x) write(x),putchar(' ')
#define Wl(x) write(x),putchar('\n')
const int Prime[]={,,,,,,,,,,};
ll n;
ll ans_Num=,ans_Ges=;
inline void dfs(int Now,ll Ges,ll Num,int Up)
{
if(Ges>ans_Ges)
{
ans_Num=Num; ans_Ges=Ges;
}
else if(Ges==ans_Ges&&Num<ans_Num)
{
ans_Num=Num;
}
int i;
for(i=;i<=Up;i++)
{
Num*=Prime[Now];
if(Num>n) return;
dfs(Now+,Ges*(i+),Num,i);
}
}
int main()
{
R(n);
dfs(,,,);
Wl(ans_Num);
return ;
}
/*
input
1000
output
840 input
354218765
output
294053760
*/
一本通1625【例 1】反素数 Antiprime的更多相关文章
- 1625: 【例 1】反素数 Antiprime
1625: [例 1]反素数 Antiprime [题目描述] 原题来自:POI 2001 如果一个大于等于 1 的正整数 n,满足所有小于 n 且大于等于 1 的所有正整数的约数个数都小于 n 的约 ...
- 反素数 Antiprime(信息学奥赛一本通 1625)(洛谷 1463)
题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1,2,4,6 ...
- poj 2886 线段树的更新+反素数
Who Gets the Most Candies? Time Limit: 5000 MS Memory Limit: 0 KB 64-bit integer IO format: %I64d , ...
- CodeForces - 27E--Number With The Given Amount Of Divisors(反素数)
CodeForces - 27E Number With The Given Amount Of Divisors Submit Status Description Given the number ...
- 【BZOJ1053】[HAOI2007]反素数 (搜索+数论)
\([POI2002][HAOI2007]\)反素数 题目描述 对于任何正整数x,其约数的个数记作\(g(x)\).例如\(g(1)=1.g(6)=4\). 如果某个正整数x满足:\(g(x)> ...
- 洛谷 P1463 [SDOI2005]反素数ant
P1463 [SDOI2005]反素数ant 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i< ...
- luoguP1463:反素数ant(打表心得☆)
题目描述 对于任何正整数x,其约数的个数记作g(x).例如g()=.g()=. 如果某个正整数x满足:g(x)>g(i) <i<x,则称x为反质数.例如,整数1,,,6等都是反质数. ...
- [luogu]P1463 [SDOI2005]反素数ant[dfs][数学][数论]
[luogu]P1463 [SDOI2005]反素数ant ——!x^n+y^n=z^n 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足: ...
- Acwing198 反素数
原题面:https://www.acwing.com/problem/content/200/ 题目大意:对于任何正整数x,其约数的个数记作g(x),例如g(1)=1.g(6)=4.如果某个正整数x满 ...
随机推荐
- 数据库基本的的sql语句
数据库数据类型: 1.定义一个学生课程模式: create schma<模式名>authorization <用户名> create schema authorization ...
- Java设置以及获取JavaBean私有属性进阶
在上一篇博客中讲到使用Java提供的原生API设置以及获取一个JavaBean的私有属性. 但是使用Java的原生API过于复杂,有没有更加简单的方法呢?答案是肯定的.下面介绍一个开元工具包来非常方便 ...
- sparse linear regression with beta process priors
虽然翻译水平有限,但是看原文虽然看得懂,但是在词汇的问题上,会导致看了后面忘了前面,所以先蹩脚的翻译成中文,然后在仔细思考论文的思想(当然不能翻译成中文就不看英文原本了,得两者一起看,这样不会丢失前面 ...
- 5213 Exp3 免杀原理与实践
5213 Exp3 免杀原理与实践 任务一:正确使用msf编码器,msfvenom生成如jar之类的其他文件,veil-evasion,自己利用shellcode编程等免杀工具或技巧 使用msf编码器 ...
- RabbitMQ 汇总
<RabbitMQ Tutorial>译文 第 1 章 简介 <RabbitMQ Tutorial>译文 第 2 章 工作队列 <RabbitMQ Tutorial> ...
- java 读写ini配置文件
ini配置文件 ;客户端配置[Client];客户端版本号version=0001;设备号devNum=6405 public final class ConfigurationFile { /** ...
- 如何在web api中使用SignalR
说明: 在webapi中使用signalr,使用IIS 环境: vs2012, .net4.5 第一步:建web api项目 第二步:nuget导入signalr Install-Package Mi ...
- 内幕:XX二手车直卖网,狗屁直卖网,我来揭开他们套路!
转自:明锐论坛 我是一位花生二手车直卖网的离职员工.已离职了一段时间,现在在某家汽车4S店公司上班.过去了那么久,每当看到他们铺天盖地的广告,心里都像十五个水桶--七上八下.思索已久,我还是决定鼓 ...
- REST-framework快速构建API--四部曲
代码目录结构: 一.使用原生APIView 使用rest-framework原生的APIView实现过程: 以url(r'^books/$', views.BookView.as_view(),nam ...
- FFMpeg笔记(六) 滤镜命名规则及使用libavfilter对视频尺寸进行裁切
在ffmpeg框架中,滤镜(filter)功能通过libavfilter库实现. 一个filter可以同时有多个输入和输出.以图为例: 图中的一系列操作共使用了四个filter,分别是 spli ...