反素数 Antiprime

题目描述

原题来自:POI 2001

如果一个大于等于 1 的正整数 n,满足所有小于 n 且大于等于 1 的所有正整数的约数个数都小于 n 的约数个数,则 n 是一个反素数。譬如:1, 2, 4, 6, 12, 24,它们都是反素数。

请你计算不大于 n 的最大反素数。

输入格式

一行一个正整数 n。

输出格式

只包含一个整数,即不大于 n 的最大反素数。

样例

样例输入

1000

样例输出

840

数据范围与提示

对于 10% 的数据,1≤n≤103

对于 40% 的数据,1≤n≤106

对于 100% 的数据,1≤n≤2×109

sol:题意有点烦,其实就是求不超过n的约数个数最多的最小的数

可以只用2,3,5,7,11,13,17,19,23,29,31爆搜出这个数

这个数就是2t1*3t2*5t3*~~~*31t10,且t1>=t2>=t3>=~~~>=t10

好像dfs挺快的??

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
inline ll read()
{
ll s=;
bool f=;
char ch=' ';
while(!isdigit(ch))
{
f|=(ch=='-'); ch=getchar();
}
while(isdigit(ch))
{
s=(s<<)+(s<<)+(ch^); ch=getchar();
}
return (f)?(-s):(s);
}
#define R(x) x=read()
inline void write(ll x)
{
if(x<)
{
putchar('-'); x=-x;
}
if(x<)
{
putchar(x+''); return;
}
write(x/);
putchar((x%)+'');
return;
}
#define W(x) write(x),putchar(' ')
#define Wl(x) write(x),putchar('\n')
const int Prime[]={,,,,,,,,,,};
ll n;
ll ans_Num=,ans_Ges=;
inline void dfs(int Now,ll Ges,ll Num,int Up)
{
if(Ges>ans_Ges)
{
ans_Num=Num; ans_Ges=Ges;
}
else if(Ges==ans_Ges&&Num<ans_Num)
{
ans_Num=Num;
}
int i;
for(i=;i<=Up;i++)
{
Num*=Prime[Now];
if(Num>n) return;
dfs(Now+,Ges*(i+),Num,i);
}
}
int main()
{
R(n);
dfs(,,,);
Wl(ans_Num);
return ;
}
/*
input
1000
output
840 input
354218765
output
294053760
*/

一本通1625【例 1】反素数 Antiprime的更多相关文章

  1. 1625: 【例 1】反素数 Antiprime

    1625: [例 1]反素数 Antiprime [题目描述] 原题来自:POI 2001 如果一个大于等于 1 的正整数 n,满足所有小于 n 且大于等于 1 的所有正整数的约数个数都小于 n 的约 ...

  2. 反素数 Antiprime(信息学奥赛一本通 1625)(洛谷 1463)

    题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1,2,4,6 ...

  3. poj 2886 线段树的更新+反素数

    Who Gets the Most Candies? Time Limit: 5000 MS Memory Limit: 0 KB 64-bit integer IO format: %I64d , ...

  4. CodeForces - 27E--Number With The Given Amount Of Divisors(反素数)

    CodeForces - 27E Number With The Given Amount Of Divisors Submit Status Description Given the number ...

  5. 【BZOJ1053】[HAOI2007]反素数 (搜索+数论)

    \([POI2002][HAOI2007]\)反素数 题目描述 对于任何正整数x,其约数的个数记作\(g(x)\).例如\(g(1)=1.g(6)=4\). 如果某个正整数x满足:\(g(x)> ...

  6. 洛谷 P1463 [SDOI2005]反素数ant

    P1463 [SDOI2005]反素数ant 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i< ...

  7. luoguP1463:反素数ant(打表心得☆)

    题目描述 对于任何正整数x,其约数的个数记作g(x).例如g()=.g()=. 如果某个正整数x满足:g(x)>g(i) <i<x,则称x为反质数.例如,整数1,,,6等都是反质数. ...

  8. [luogu]P1463 [SDOI2005]反素数ant[dfs][数学][数论]

    [luogu]P1463 [SDOI2005]反素数ant ——!x^n+y^n=z^n 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足: ...

  9. Acwing198 反素数

    原题面:https://www.acwing.com/problem/content/200/ 题目大意:对于任何正整数x,其约数的个数记作g(x),例如g(1)=1.g(6)=4.如果某个正整数x满 ...

随机推荐

  1. Foxmail添加gmail密码错误

    想在foxmail上添加gmail时一直报密码错误,找了一圈发现是开启了两步验证,需要用应用专用密码才可以登录,生成应用专用密码的地址如下: https://security.google.com/s ...

  2. DB-Engines Ranking

    DB-Engines Ranking trend chart The DB-Engines Ranking ranks database management systems according to ...

  3. 卢卡斯定理 Lucas (p为素数)

    证明摘自:(我网上唯一看得懂的证明) https://blog.csdn.net/alan_cty/article/details/54318369 结论:(显然递归实现)lucas(n,m)=luc ...

  4. ORA-02291: 违反完整约束条件 - 未找到父项关键字

    由于大意,在设置数据库表时将外键字段的类型与外键表的主键字段类型不一致,造成此错误. 我的情况是: 1.将一个为number(10)的外键设置成了number(19) 2.将外键字段对应的主键表设置成 ...

  5. 从裸机编程到嵌入式Linux编程思想的转变------分而治之:驱动和应用程序

    笔者学习嵌入式Linux也有一段时间了,很奇怪的是很多书讲驱动编程方面的知识,也有很多书将ARM9方面的知识,但是从以前51形式的(对寄存器直接操作,初始化芯片的功能模块)编程方法,和思维模式,变换为 ...

  6. map的综合例子

    #include<iostream> #include<string> #include<map> #include<fstream> #include ...

  7. 变量内存空间的释放---c语言

    堆栈内存释放: 栈的内存是由编译器自动分配.释放,出了作用域就释放. 堆的内存由程序员分配.释放,他的作用域是整个程序,如果程序没有释放,程序结束时会自动释放.

  8. HDU-6356 Glad You Came (线段树)

    题目链接:Glad You Came 题意:数组有n个数初始为0,m个询问,每个询问给出L R V(按照给定函数生成),将数组的下标L到R的数与V取较大值,最后输出给定的公式结果. 题意:哇~打比赛的 ...

  9. Bluedroid协议栈HCI线程分析

    蓝牙进程中有多个线程,其中HCI 线程是负责处理蓝牙主机端和控制器的数据处理和收发的工作. 本篇文章就是分析一下该线程的数据处理流程. 1.跟HCI相关的接口 首先看看hci的相关的接口:在hci_l ...

  10. eclipse 最最最常用快捷键

    使用eclipse这么久,发现其跟PS一样,使用一些快捷键会有效率很多. 至此总结出以下每次打开eclipse基本都会用上的快捷键. 不熟悉这些快捷键,在实际编程中有意识使用的话对以后编码很有帮助. ...