MT【72】一个不等式

证明:

评: 可以思考$\frac{1}{(1+b)^2}+\frac{1}{(1+a)^2}$与$\frac{2}{(1+\sqrt{ab})^2}$大小。
MT【72】一个不等式的更多相关文章
- MT【10】和三次有关的一个因式分解
解答: 评:1此处因式分解也可以看成关于$a$的函数$f(a)$利用多项式有理根的有关知识得到 2.此处我们可以得到关于$\Delta ABC$的余弦的一个不等式$cosA+cosB+cosC> ...
- MT【146】一边柯西,一边舍弃
(2018浙江省赛9题)设$x,y\in R$满足$x-6\sqrt{y}-4\sqrt{x-y}+12=0$,求$x$的范围______ 解答:$x+12=6\sqrt{y}+4\sqrt{x-y} ...
- BZOJ2801/洛谷P3544 [POI2012]BEZ-Minimalist Security(题目性质发掘+图的遍历+解不等式组)
题面戳这 化下题面给的式子: \(z_u+z_v=p_u+p_v-b_{u,v}\) 发现\(p_u+p_v-b_{u,v}\)是确定的,所以只要确定了一个点\(i\)的权值\(x_i\),和它在同一 ...
- MT【207】|ax^2+bx+c|中判别式$\Delta$的含义
已知$a,b\in R^+,a+b=2$且对任意的$x\in R$,均有$|2x^2+ax-b|\ge|x^2+cx+d|$则$\dfrac{d-4c}{cd}$的最小值______ 提示:注意到$\ ...
- MT【190】绝对值的和
(2012浙江压轴题)已知$a>0,b\in R$,函数$f(x)=4ax^3-2bx-a+b$.1)证明:当$0\le x\le 1$时,i)函数$f(x)$的最大值为$|2a-b|+a;$i ...
- MT【75】考察高斯函数的一道高考压轴题
解答:答案1,3,4. 这里关于高斯函数$[x]$的一个不等式是需要知道的$x-1<[x]\le x$,具体的:
- 含有不等式约束的优化问题——KKT条件
优化问题: 其中, 定义:对于一个不等式约束,如果,那么称不等式约束是处起作用的约束. 定义:设满足,设为起作用不等式约束的下标集: 如果向量:是线性无关的,则称是一个正则点. 下面给出某个点是局部极 ...
- Hermite 矩阵的特征值不等式
将要学习 关于 Hermite 矩阵的特征值不等式. Weyl 定理 以及推论. Weyl 定理 Hermann Weyl 的如下定理是大量不等式的基础,这些不等式要么涉及两个 Hermite 矩 ...
- 【Luogu】 P5482 [JLOI2011]不等式组 题解
本来以为有多难,结果发现是道树状数组水题... 显然,对于每一个添加的不等式,有3种情况: \(a<0\) .此时可转换为 $x < {{a} \over {c-b}} $ . 但是,我们 ...
随机推荐
- git 用法---成功添加一个文件到github
一.git 提交 全部文件 git add . git add xx命令可以将xx文件添加到暂存区,如果有很多改动可以通过 git add -A .来一次添加所有改变的文件.注意 -A 选项后面还有一 ...
- 从harbor部署到在k8s中使用
一.概述 harbor是什么呢?英文单词的意思是:港湾.港湾用来存放集装箱(货物的),而docker的由来正是借鉴了集装箱的原理,所以harbor是用于存放docker的镜像,作为镜像仓库使用.官方的 ...
- aurora 64B/66B ip核设置与例程代码详解
见网页https://blog.csdn.net/u014586651/article/details/84349328 https://blog.csdn.net/u012135070/articl ...
- Ceph分布式存储集群-硬件选择
在规划Ceph分布式存储集群环境的时候,对硬件的选择很重要,这关乎整个Ceph集群的性能,下面梳理到一些硬件的选择标准,可供参考: 1)CPU选择Ceph metadata server会动态的重新分 ...
- LB层到Real Server之间访问请求的响应时间及HTTP状态码监控及报警设置
为了监控到各业务的访问质量,基于LB层的Nginx日志,实现LB层到Real Server之间访问请求的响应时间(即upstream_response_time)及HTTP状态码(即upstream_ ...
- Swarm基于多主机容器网络 - overlay networks 梳理
前面介绍了Docker管理工具-Swarm部署记录,下面重点说下Swarm基于多主机容器通信的覆盖网络 在Docker版本1.12之后swarm模式原生支持覆盖网络(overlay networks) ...
- Docker容器学习梳理 - 容器间网络通信设置(Pipework和Open vSwitch)
自从Docker容器出现以来,容器的网络通信就一直是被关注的焦点,也是生产环境的迫切需求.容器的网络通信又可以分为两大方面:单主机容器上的相互通信,和跨主机的容器相互通信.下面将分别针对这两方面,对容 ...
- Pupet自动化管理环境部署记录
废话不多说了,下面记录下Puppet在Centos下的部署过程: puppet是什么puppet是一种基于ruby语言开发的Lnux.Unix.windows平台的集中配置管理系统.它使用自有的pup ...
- Python_每日习题_0001_数字组合
# Topic: There are four digits: 1, 2, 3 and 4. # How many different three digits can be formed witho ...
- 第六周分析Linux内核创建一个新进程的过程
潘恒 原创作品转载请注明出处<Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 task_struct结构: ...