一、网络结构

models/bvlc_reference_caffenet/deploy.prototxt

二、显示conv1的网络权值

clear;
clc;
close all;
addpath('matlab')
caffe.set_mode_cpu();
caffe.version()
net = caffe.Net('models/bvlc_reference_caffenet/deploy.prototxt',...
'models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel', 'test');
net.layer_names
net.blob_names
conv1_layer = net.layer_vec();
blob1 = conv1_layer.params();%权重,params()为偏置
w = blob1.get_data();
size(w)%
W = zeros(*, *);%96张小图片,每张小图片11**,输出的卷积个数为96
for u = :
for v = :
W(*(u-) + (:), *(v-) + (:)) = w(:, :, u, v)';%矩阵块拷贝
end
end W = W - min(min(W));
W = W/(max(max(W)))*;%归一化到[,]
W = uint8(W);
W = [W, zeros(size(W, ), *)];%扩展矩阵,大小为(11x3,4x11)
WW = cat(, W(:, :), W(:, :), W(:, :));%将二维矩阵按通道拆分为3个二维矩阵
W = zeros(*, *, );%用于显示的彩色图片,初始化为黑色
for u = :
for v = :
W((u-)* + (:), (v-)* + (:), :) = WW(:, (u-)** + (v-)* + (:), :);%将11行每11列的数据块复制到W,复制3个通道
end
end
W = uint8(W);
figure; imshow(W);

输出:

ans =

1.0.

ans =

  × cell 数组

    'data'
'conv1'
'relu1'
'pool1'
'norm1'
'conv2'
'relu2'
'pool2'
'norm2'
'conv3'
'relu3'
'conv4'
'relu4'
'conv5'
'relu5'
'pool5'
'fc6'
'relu6'
'drop6'
'fc7'
'relu7'
'drop7'
'fc8'
'prob' ans = × cell 数组 'data'
'conv1'
'pool1'
'norm1'
'conv2'
'pool2'
'norm2'
'conv3'
'conv4'
'conv5'
'pool5'
'fc6'
'fc7'
'fc8'
'prob' ans =

三、其他卷积层网络权值可视化

1、visualize_weights.m

function[] = visualize_weights(w,s)
h = max(size(w, ), size(w, )); %Kernel size
g = h + s; %Grid size, larger than Kernel size for better visual effects. %Normalization for gray scale
w = w - min(min(min(min(w))));
w = w/max(max(max(max(w))))*;
w = uint8(w); W = zeros(g*size(w, ), g*size(w, ));%用于保存权值的数据,通道数*g 行, 卷积核数*g 列
for u = :size(w, )
for v = :size(w, )
W(g*(u-) + (:h), g*(v-) + (:h)) = w(:, :, u, v)';
end
end
W = uint8(W);
figure; imshow(W);

2、caffenet_weights_vis.m

clear;
clc;
close all;
addpath('matlab')
caffe.set_mode_cpu();
sprintf(['Caffe Version = ', caffe.version(), '\n']);
net = caffe.Net('models/bvlc_reference_caffenet/deploy.prototxt',...
'models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel', 'test'); sprintf('Load net done. Net layers: ');
net.layer_names sprintf('Net blobs: ');
net.blob_names %Conv1 Weight Visualization
conv1_layer = net.layer_vec();
blob1 = conv1_layer.params();
w = blob1.get_data();
sprintf('Conv1 Weight shape:');
size(w)
visualize_weights(w, ); %Conv2 Weight Visualization
conv2_layer = net.layer_vec();
blob2 = conv2_layer.params();
w2 = blob2.get_data();
sprintf('Conv2 Weight shape:');
size(w2)
visualize_weights(w2, ); %Conv3 Weight Visualization
conv3_layer = net.layer_vec();
blob3 = conv3_layer.params();
w3 = blob3.get_data();
sprintf('Conv3 Weight shape:');
size(w3)
visualize_weights(w3, ); %Conv4 Weight Visualization
conv4_layer = net.layer_vec();
blob4 = conv4_layer.params();
w4 = blob4.get_data();
sprintf('Conv4 Weight shape:');
size(w4)
visualize_weights(w4, ); %Conv5 Weight Visualization
conv5_layer = net.layer_vec();
blob5 = conv5_layer.params();
w5 = blob5.get_data();
sprintf('Conv5 Weight shape:');
size(w5)
visualize_weights(w5, );

3、输出

ans =

  × cell 数组

    'data'
'conv1'
'relu1'
'pool1'
'norm1'
'conv2'
'relu2'
'pool2'
'norm2'
'conv3'
'relu3'
'conv4'
'relu4'
'conv5'
'relu5'
'pool5'
'fc6'
'relu6'
'drop6'
'fc7'
'relu7'
'drop7'
'fc8'
'prob' ans = × cell 数组 'data'
'conv1'
'pool1'
'norm1'
'conv2'
'pool2'
'norm2'
'conv3'
'conv4'
'conv5'
'pool5'
'fc6'
'fc7'
'fc8'
'prob' ans = ans = ans = 警告: 图像太大,无法在屏幕上显示;将以 % 显示
> In images.internal.initSize (line )
In imshow (line )
In visualize_weights (line )
In caffenet_weights_vis (line ) ans = ans = >>

end

bvlc_reference_caffenet网络权值可视化的更多相关文章

  1. mnist全连接层网络权值可视化

    一.数据准备 网络结构:lenet_lr.prototxt 训练好的模型:lenet_lr_iter_10000.caffemodel 下载地址:链接:https://pan.baidu.com/s/ ...

  2. weight decay (权值衰减)

    http://blog.sina.com.cn/s/blog_890c6aa30100z7su.html 在机器学习或者模式识别中,会出现overfitting,而当网络逐渐overfitting时网 ...

  3. 2019年CCPC网络赛 HDU 6703 array【权值线段树】

    题目大意:给出一个n个元素的数组A,A中所有元素都是不重复的[1,n].有两种操作:1.将pos位置的元素+1e72.查询不属于[1,r]中的最小的>=k的值.强制在线. 题解因为数组中的值唯一 ...

  4. caffe中权值初始化方法

    首先说明:在caffe/include/caffe中的 filer.hpp文件中有它的源文件,如果想看,可以看看哦,反正我是不想看,代码细节吧,现在不想知道太多,有个宏观的idea就可以啦,如果想看代 ...

  5. SPOJ 839 OPTM - Optimal Marks (最小割)(权值扩大,灵活应用除和取模)

    http://www.spoj.com/problems/OPTM/ 题意: 给出一张图,点有点权,边有边权 定义一条边的权值为其连接两点的异或和 定义一张图的权值为所有边的权值之和 已知部分点的点权 ...

  6. 神经网络权值初始化方法-Xavier

    https://blog.csdn.net/u011534057/article/details/51673458 https://blog.csdn.net/qq_34784753/article/ ...

  7. weight decay(权值衰减)、momentum(冲量)和normalization

    一.weight decay(权值衰减)的使用既不是为了提高你所说的收敛精确度也不是为了提高收敛速度,其最终目的是防止过拟合.在损失函数中,weight decay是放在正则项(regularizat ...

  8. CNN中的局部连接(Sparse Connectivity)和权值共享

    局部连接与权值共享 下图是一个很经典的图示,左边是全连接,右边是局部连接. 对于一个1000 × 1000的输入图像而言,如果下一个隐藏层的神经元数目为10^6个,采用全连接则有1000 × 1000 ...

  9. 权值初始化 - Xavier和MSRA方法

    设计好神经网络结构以及loss function 后,训练神经网络的步骤如下: 初始化权值参数 选择一个合适的梯度下降算法(例如:Adam,RMSprop等) 重复下面的迭代过程: 输入的正向传播 计 ...

随机推荐

  1. [Java] int 转换为BigDecimal

    new BigDecimal(int i); BigDecimal.parseBigDecimal(String.valueOf(int i));

  2. C#退出程序方法分类

    1.this.Close();   只是关闭当前窗口,若不是主窗体的话,是无法退出程序的,另外若有托管线程(非主线程),也无法干净地退出:

  3. fabric网络环境启动过程详解

    这篇文章对fabric的网络环境启动过程进行讲解,也就是我们上节讲到的启动测试fabric网络环境时运行network_setup.sh这个文件的执行流程 fabric网络环境启动过程详解 上一节我们 ...

  4. Annotaion——深入理解注解类型

    什么是注解? 对于很多初次接触的开发者来说应该都有这个疑问?Annontation是Java5开始引入的新特征,中文名称叫注解.它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metada ...

  5. yii2常用路径获取

    public function actionGetUrlList() { echo "当前域名地址:".Yii::$app->request->hostInfo.&qu ...

  6. 『TensorFlow』第三弹_可视化框架介绍_悄悄问圣僧

    添加记录节点 -> 汇总记录节点 -> run汇总节点 -> [书写器生成]书写入文件 [-> 刷新缓冲区] 可视化关键点: 注意, 1.with tf.name_scope( ...

  7. wrk 使用记录及踩过的坑

    wrk是什么?https://github.com/wg/wrk wrk 是一个非常小巧高效的开源性能测试工具,支持lua脚本来创建复杂的测试场景.wrk 的一个很好的特性就是能用很少的线程压出很大的 ...

  8. XSS/XSRF

    一.XSS 1.1 xss的含义 跨站脚本攻击(Cross Site Scripting),为不和层叠样式表(Cascading Style Sheets, CSS)的缩写混淆,故将跨站脚本攻击缩写为 ...

  9. shell中下载最新版本或指定版本的办法(Dockerfile 中通用)

    VER=$(curl -s https://api.github.com/repos/v2ray/v2ray-core/releases/latest | grep tag_name | cut -d ...

  10. SHOW Syntax

    MySQL 5.5 Reference Manual  /  SQL Statement Syntax  /  Database Administration Statements  /  SHOW ...