【CSU1911】Card Game(FWT)

题面

vjudge

题目大意:

给定两个含有\(n\)个数的数组

每次询问一个数\(x\),回答在每个数组中各选一个数,或起来之后的结果恰好为\(x\)的方案数。

题解

\(FWT\)的模板题

\(FWT\)写起来是真的舒服

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
inline int gi()
{
int x=0;char ch[20];
scanf("%s",ch+1);
for(int i=1,l=strlen(ch+1);i<=l;++i)x=(x<<1)+(ch[i]-48);
return x;
}
int n,m,Q,N;
ll a[1<<19],b[1<<19];
void FWT(ll *P,int opt)
{
for(int i=2;i<=N;i<<=1)
for(int p=i>>1,j=0;j<N;j+=i)
for(int k=j;k<j+p;++k)
P[k+p]+=P[k]*opt;
}
int main()
{
int T=read();
for(int tt=1;tt<=T;++tt)
{
printf("Case #%d:\n",tt);
n=read();m=read();N=1<<m;
memset(a,0,sizeof(a));memset(b,0,sizeof(b));
for(int i=1;i<=n;++i)a[gi()]++;
for(int i=1;i<=n;++i)b[gi()]++;
FWT(a,1);FWT(b,1);
for(int i=0;i<N;++i)a[i]*=b[i];
FWT(a,-1);Q=read();
while(Q--)printf("%lld\n",a[gi()]);
}
return 0;
}

【CSU1911】Card Game(FWT)的更多相关文章

  1. 【HDU4336】Card Collector(Min-Max容斥)

    [HDU4336]Card Collector(Min-Max容斥) 题面 Vjudge 题解 原来似乎写过一种状压的做法,然后空间复杂度很不优秀. 今天来补一种神奇的方法. 给定集合\(S\),设\ ...

  2. 【HDU4336】Card Collector (动态规划,数学期望)

    [HDU4336]Card Collector (动态规划,数学期望) 题面 Vjudge 题解 设\(f[i]\)表示状态\(i\)到达目标状态的期望 \(f[i]=(\sum f[j]*p[j]+ ...

  3. 【题解】毒蛇越狱(FWT+容斥)

    [题解]毒蛇越狱(FWT+容斥) 问了一下大家咋做也没听懂,按兵不动没去看题解,虽然已经晓得复杂度了....最后感觉也不难 用FWT_OR和FWT_AND做一半分别求出超集和和子集和,然后 枚举问号是 ...

  4. 【CF772D】Varying Kibibits FWT

    [CF772D]Varying Kibibits 题意:定义函数f(a,b,c...)表示将a,b,c..的10进制下的每一位拆开,分别取最小值组成的数.如f(123,321)=121,f(530,  ...

  5. 【CF850E】Random Elections FWT

    [CF850E]Random Elections 题意:有n位选民和3位预选者A,B,C,每个选民的投票方案可能是ABC,ACB,BAC...,即一个A,B,C的排列.现在进行三次比较,A-B,B-C ...

  6. 【XSY2753】Lcm 分治 FWT FFT 容斥

    题目描述 给你\(n,k\),要你选一些互不相同的正整数,满足这些数的\(lcm\)为\(n\),且这些数的和为\(k\)的倍数. 求选择的方案数.对\(232792561\)取模. \(n\leq ...

  7. 【bzoj4589】Hard Nim FWT+快速幂

    题目大意:给你$n$个不大于$m$的质数,求有多少种方案,使得这$n$个数的异或和为$0$.其中,$n≤10^9,m≤10^5$. 考虑正常地dp,我们用$f[i][j]$表示前$i$个数的异或和为$ ...

  8. 【learning】快速沃尔什变换FWT

    问题描述 已知\(A(x)\)和\(B(x)\),\(C[i]=\sum\limits_{j\otimes k=i}A[j]*B[k]\),求\(C\) 其中\(\otimes\)是三种位运算的其中一 ...

  9. 【bzoj4589】Hard Nim FWT

    题目描述 Claris和NanoApe在玩石子游戏,他们有n堆石子,规则如下: 1. Claris和NanoApe两个人轮流拿石子,Claris先拿. 2. 每次只能从一堆中取若干个,可将一堆全取走, ...

随机推荐

  1. EDM站点

    设计邮件模版 http://templates.mailchimp.com/

  2. 两个有序数组合并成一个有序数组(要求时间复杂度为O(n))

    面试题: 怎样把两个有序数组合并成有序数组呢 逻辑步骤: 1.假设两个数组为A和B 2.A和B都是从小到大的顺序进行排列 ** 1.我们可以直接比较两个数组的首元素,哪个小就把这个小元素放入可变数组. ...

  3. Xpath语法&示例

    一.选取节点常用的路径表达式: 表达式 描述 实例   nodename 选取nodename节点的所有子节点 xpath(‘//div’) 选取了div节点的所有子节点 / 从根节点选取 xpath ...

  4. Appium(Python)测试混血App

    Hybrid App(混合模式移动应用)是指介于web-app.native-app这两者之间的app兼具Native App良好用户交互体验的优势和Web App跨平台开发的优势 HybridApp ...

  5. 接口测试工具postman(六)添加变量(参数化)

    1.添加全局变量并引用 2.通过设置请求前置配置变量 3.在Tests里面,把响应数据设置为变量 4.添加外部文件,引用外部文件中的变量和数据,此种场景就可以执行多次请求 1)配置文件,txt或者cs ...

  6. 如何编写 Python 程序

    如何编写 Python 程序 从今以后,保存和运行 Python 程序的标准步骤如下: 对于 PyCharm 用户 打开 PyCharm. 以给定的文件名创建新文件. 输入案例中给出的代码. 右键并运 ...

  7. [JSON].typeOf( keyPath )

    语法:[JSON].typeOf( keyPath ) 返回:[String | Number | Boolean | Json | Array |  Function | 空字符] 说明:获取指定键 ...

  8. Python3 Tkinter-Pack

    1.创建 from tkinter import * root=Tk() print(root.pack_slaves()) Label(root,text='pack').pack() print( ...

  9. 八:The YARN Timeline Server

    一.Overview 介绍     yarn timeline server用于存储和检查应用程序过去和现在的信息(比如job history server).有两个功能: 1.Persisting ...

  10. Centos6配置开启FTP Server

    vsftpd作为FTP服务器,在Linux系统中是非常常用的.下面我们介绍如何在centos系统上安装vsftp. 什么是vsftpd vsftpd是一款在Linux发行版中最受推崇的FTP服务器程序 ...