【CSU1911】Card Game(FWT)

题面

vjudge

题目大意:

给定两个含有\(n\)个数的数组

每次询问一个数\(x\),回答在每个数组中各选一个数,或起来之后的结果恰好为\(x\)的方案数。

题解

\(FWT\)的模板题

\(FWT\)写起来是真的舒服

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
inline int gi()
{
int x=0;char ch[20];
scanf("%s",ch+1);
for(int i=1,l=strlen(ch+1);i<=l;++i)x=(x<<1)+(ch[i]-48);
return x;
}
int n,m,Q,N;
ll a[1<<19],b[1<<19];
void FWT(ll *P,int opt)
{
for(int i=2;i<=N;i<<=1)
for(int p=i>>1,j=0;j<N;j+=i)
for(int k=j;k<j+p;++k)
P[k+p]+=P[k]*opt;
}
int main()
{
int T=read();
for(int tt=1;tt<=T;++tt)
{
printf("Case #%d:\n",tt);
n=read();m=read();N=1<<m;
memset(a,0,sizeof(a));memset(b,0,sizeof(b));
for(int i=1;i<=n;++i)a[gi()]++;
for(int i=1;i<=n;++i)b[gi()]++;
FWT(a,1);FWT(b,1);
for(int i=0;i<N;++i)a[i]*=b[i];
FWT(a,-1);Q=read();
while(Q--)printf("%lld\n",a[gi()]);
}
return 0;
}

【CSU1911】Card Game(FWT)的更多相关文章

  1. 【HDU4336】Card Collector(Min-Max容斥)

    [HDU4336]Card Collector(Min-Max容斥) 题面 Vjudge 题解 原来似乎写过一种状压的做法,然后空间复杂度很不优秀. 今天来补一种神奇的方法. 给定集合\(S\),设\ ...

  2. 【HDU4336】Card Collector (动态规划,数学期望)

    [HDU4336]Card Collector (动态规划,数学期望) 题面 Vjudge 题解 设\(f[i]\)表示状态\(i\)到达目标状态的期望 \(f[i]=(\sum f[j]*p[j]+ ...

  3. 【题解】毒蛇越狱(FWT+容斥)

    [题解]毒蛇越狱(FWT+容斥) 问了一下大家咋做也没听懂,按兵不动没去看题解,虽然已经晓得复杂度了....最后感觉也不难 用FWT_OR和FWT_AND做一半分别求出超集和和子集和,然后 枚举问号是 ...

  4. 【CF772D】Varying Kibibits FWT

    [CF772D]Varying Kibibits 题意:定义函数f(a,b,c...)表示将a,b,c..的10进制下的每一位拆开,分别取最小值组成的数.如f(123,321)=121,f(530,  ...

  5. 【CF850E】Random Elections FWT

    [CF850E]Random Elections 题意:有n位选民和3位预选者A,B,C,每个选民的投票方案可能是ABC,ACB,BAC...,即一个A,B,C的排列.现在进行三次比较,A-B,B-C ...

  6. 【XSY2753】Lcm 分治 FWT FFT 容斥

    题目描述 给你\(n,k\),要你选一些互不相同的正整数,满足这些数的\(lcm\)为\(n\),且这些数的和为\(k\)的倍数. 求选择的方案数.对\(232792561\)取模. \(n\leq ...

  7. 【bzoj4589】Hard Nim FWT+快速幂

    题目大意:给你$n$个不大于$m$的质数,求有多少种方案,使得这$n$个数的异或和为$0$.其中,$n≤10^9,m≤10^5$. 考虑正常地dp,我们用$f[i][j]$表示前$i$个数的异或和为$ ...

  8. 【learning】快速沃尔什变换FWT

    问题描述 已知\(A(x)\)和\(B(x)\),\(C[i]=\sum\limits_{j\otimes k=i}A[j]*B[k]\),求\(C\) 其中\(\otimes\)是三种位运算的其中一 ...

  9. 【bzoj4589】Hard Nim FWT

    题目描述 Claris和NanoApe在玩石子游戏,他们有n堆石子,规则如下: 1. Claris和NanoApe两个人轮流拿石子,Claris先拿. 2. 每次只能从一堆中取若干个,可将一堆全取走, ...

随机推荐

  1. 韩国KT软件NB-IOT开发记录V150(2)IOT maker通信相关

    1. 测试的AT指令,创建端口和IP地址链接 AT#IMINIT=," 开始连接 AT#IMCONN 创建object ID AT#IMOBJMETA=,," 发送数据 AT#IM ...

  2. protected修饰符详解

    protected这个修饰符,各大参考书都会这样说:访问权限为类内,包内和子类,因此在父类中定义的方法和成员变量如果为protected修饰的,是可以在不同包中的子类进行访问的,示例代码如下: pac ...

  3. Linux命令应用大词典-第23章 进程和服务管理

    23.1 ps:报告当前进程的快照 23.2 top:显示当前正在运行的进程 23.3 pgrep:按名称和其他属性查找进程 23.4 pidof:查找正在运行的进程的进程号 23.5 pstree: ...

  4. ADO.NET基础学习-----四种模型,防止SQL注入

    1.ExcuteNonQuery 执行非查询语句,返回受影响的行数. // 1.ExcuteNonQuery string sqlconn = "Data Source=wss;Initia ...

  5. python读取日志,存入mysql

    1.从 http://www.almhuette-raith.at/apache-log/access.log 下载 1万条日志记录,保存为一个文件,读取文件并解析日志,从日志中提取ip, time_ ...

  6. Halcon图像采集助手提示找不到指定DLL文件

    问题原因: Halcon软件更新导致某些图像采集DLL失效,这个时候就需要去MVTEC官网下载图像采集接口补丁程序,MVTEC官网地址http://www.mvtec.com/. 对于其他模块失效的D ...

  7. c# winform 服务器提交了协议冲突. Section=ResponseStatusLine

    [转] 最近在用.net写一个网络蜘蛛,发现对有的网站用HttpWebrequest抓取网页的时候会报错,捕获异常提示:"服务器提交了协议冲突 Section=ResponseStatusL ...

  8. vue开发学习中遇到的问题以及解决方法

    1:node-sass 安装失败,可使用 cnpm 安装 npm install cnpm -g --registry=https://registry.npm.taobao.org cnpm -v ...

  9. Python中的reload函数

    Python中的import语句可以导入module文件,但是import语句只是第一次导入的时候会执行module文件中的代码,然后就会把导入的模块文件存入到内存,当再次导入的时候,Python是直 ...

  10. “hello world!”团队第三次会议

    团队“hello world!”团队召开的第三次会议.博客内容: 一.会议时间 二.会议地点 三.会议成员 四.会议内容 五.todo list 六.会议照片 七.燃尽图 一.会议时间 2017年10 ...