MR execution in YARN
Overview
YARN provides API not for application developers but for the great developers working on new computing engines. YARN make it easy and unified for resource management for the computing engines. It fills the gap between mputation and storage. NoSQL database like HBase use slider apdaters to YARN.
With YARN 
Withou YARN

Entities in YARN
The base of Distribution is HDFS and YARN. HDFS for managing storage. YARN for managing computing.
Client: who submits the job: connects to MR or HDFS framework.
YARN Resource Manager: allocate computing resource required by the job.
Scheduleer:job scheduling,locate the resources.
Application Manager:performan any monitoring or tracking of application/job status.
YARN Node Manager: on all slave nodes. launch / manager containers.
MR Application Master:carry out execution of the job associated with it. different between computing engines. It coordinates the tasks running and monitors the progress and aggregates it and since reports to its client . It is spawn under node manager on the instruction by RM. spawn for every job and end with the job done.
YARN Child: manages the run of the map and reduce tasks,send updates / progress to application master.
HDFS:i/o
The process of job run in YARN
Job submission:Your program triggers the job client and the job client contacts the RM for the new job id. copy the job resource to HDFS with high replica and then submit the job.
Job Initialization: Then RM (the scheduler)picks up the job from the job queue(FIFO,capacity,fair) and contacts NM,sponsor new container (Linux kernel feature, a abstruct of resource like cpu,mem,disk,network bandwidth. doker uses it too) and launches AM for the job.
Job Assigement: AM creates new objects , it retrives the input splits from HDFS and crete one task per input split. AM then decides if the job is samll or not. If it is small job , run its jvm on a single node. If not,contacts RM locate computing resources.
Job Execution:RM considers data locality while assigning the resources(Scheduler at this time knows where the splits are located.It gathers this info from the heartbeats of NM. Based on it, it consider data locality when allocating resources. try as best, then consider the rack local nodes ,if still fails, it will pick random from available noedes).AM then communicates node managers which launches the yarn child(a java program the main class is YarnChild,seperate JVM from long running system demons from the suer code). yarn child retrieves the code and other resource from HDFS and then run the tasks(mr).Yan child sends the progress to AM(every 3 seconds) which aggregrates(each yarn client's information) the report and sends the report to the client.
Job Exmpletion:On job completion , yarn child and AM terminates themseves for the next job.

MR execution in YARN的更多相关文章
- Yarn源码分析之MRAppMaster上MapReduce作业处理总流程(一)
我们知道,如果想要在Yarn上运行MapReduce作业,仅需实现一个ApplicationMaster组件即可,而MRAppMaster正是MapReduce在Yarn上ApplicationMas ...
- hadoop多机安装HA+YARN
HA 相比于Hadoop1.0,Hadoop 2.0中的HDFS增加了两个重大特性,HA(热备)和Federation(联邦).HA即为High Availability,用于解决NameNode单点 ...
- hadoop多机安装YARN
hadoop伪分布安装称为测试环境安装,多机分布称为生成环境安装.以下安装没有进行HA(热备)和Federation(联邦).除非是性能需要,否则没必要安装Federation,HA可以一试,涉及到Z ...
- Hadoop2.4.1 64-Bit QJM HA and YARN HA + Zookeeper-3.4.6 + Hbase-0.98.8-hadoop2-bin HA Install
Hadoop2.4.1 64-Bit QJM HA and YARN HA Install + Zookeeper-3.4.6 + Hbase-0.98.8-hadoop2-bin HA(Hadoop ...
- Hadoop 5、HDFS HA 和 YARN
Hadoop 2.0 产生的背景Hadoop 1.0 中HDFS和MapReduce存在高可用和扩展方面的问题 HDFS存在的问题 NameNode单点故障,难以用于在线场景 NameNode压力过大 ...
- YARN的基础配置
基于HADOOP3.0+Centos7.0的yarn基础配置: 执行步骤:(1)配置集群yarn (2)启动.测试集群(3)在yarn上执行wordcount案例 一.配置yarn集群 1.配置yar ...
- YARN的三种调度器的使用
YRAN提供了三种调度策略 一.FIFO-先进先出调度器 YRAN默认情况下使用的是该调度器,即所有的应用程序都是按照提交的顺序来执行的,这些应用程序都放在一个队列中,只有在前面的一个任务执行完成之后 ...
- Hadoop YARN上运行MapReduce程序
(1)配置集群 (a)配置hadoop-2.7.2/etc/hadoop/yarn-env.sh 配置一下JAVA_HOME export JAVA_HOME=/home/hadoop/bigdata ...
- hadoop3.1集成yarn ha
1.角色分配
随机推荐
- Const 关键字详解
const 标识符 在c++中作为常量修饰符 用来修饰 函数 变量 指针 const 修饰的变量不可以改变值 const 在修饰指针的时候 const 标识符出现在*的左边表示 指向的变量为常量不能 ...
- linux系统基础之---系统基本安全(基于centos7.4 1708)
- Cobbler实现自动化安装(下)--实现过程
实验环境 [root@cobbler ~]# cat /etc/redhat-release CentOS Linux release 7.2.1511 (Core) [root@cobbler ~] ...
- 基于JQ的简版选项卡记录
<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...
- Flask之Flask实例有哪些参数
常用的参数应用实例 from flask import Flask, render_template, url_for, session, request, redirect app = Flask( ...
- Redis集群进阶之路
Redis集群规范 本文档基于Redis 3.X或更高版本,讲解Redis集群算法以及设计原理.此官方文档长期更新且随着Redis新版本特性的变化变动,详细请留意官网. 官网地址:https://re ...
- git 完善使用中
GIT 版本库控制: 第一步:Git 的账号注册 url :https://github.com/ 这是git的官网如果第一次打开会这样 中间红色圈内是注册 内容, 第一项是用户名 第二项是邮箱 第三 ...
- Delphi7 GDI+学习
Delphi7自带的绘图有锯齿,所以要学习GDI+ 主要是从这个网站学习 http://www.bianceng.com/Programming/Delphi/201212/34691.htm 相关控 ...
- apache的.htaccess规则
1..htaccess文件使用前提 .htaccess的主要作用就是实现url改写,也就是当浏览器通过url访问到服务器某个文件夹时,作为主人,我们可以来接待这个url,具体 地怎样接待它,就是此文件 ...
- 树莓派编译程序时报错:virtual memory exhausted: Cannot allocate memory
一.原因分析: 树莓派内存太小,编译程序会出现virtual memory exhausted: Cannot allocate memory的问题,可以用swap扩展内存的方法. 二.解决方法: 安 ...