Overview

YARN provides API not for application developers but for the great developers working on new computing engines. YARN make it easy and unified for resource management for the computing engines. It fills the gap between mputation and storage. NoSQL database like HBase use slider apdaters to YARN.

With YARN 

Withou YARN

Entities in YARN

The base of Distribution is HDFS and YARN. HDFS for managing storage. YARN for managing computing.
Client: who submits the job: connects to MR or HDFS framework.
YARN Resource Manager: allocate computing resource required by the job.
Scheduleer:job scheduling,locate the resources.
Application Manager:performan any monitoring or tracking of application/job status.
YARN Node Manager: on all slave nodes. launch / manager containers.
MR Application Master:carry out execution of the job associated with it. different between computing engines. It coordinates the tasks running and monitors the progress and aggregates it and since reports to its client . It is spawn under node manager on the instruction by RM. spawn for every job and end with the job done.
YARN Child: manages the run of the map and reduce tasks,send updates / progress to application master.
HDFS:i/o

The process of job run in YARN

Job submission:Your program triggers the job client and the job client contacts the RM for the new job id. copy the job resource to HDFS with high replica and then submit the job.

Job Initialization: Then RM (the scheduler)picks up the job from the job queue(FIFO,capacity,fair) and contacts NM,sponsor new container (Linux kernel feature, a abstruct of resource like cpu,mem,disk,network bandwidth. doker uses it too) and launches AM for the job.
Job Assigement: AM creates new objects , it retrives the input splits from HDFS and crete one task per input split. AM then decides if the job is samll or not. If it is small job , run its jvm on a single node. If not,contacts RM locate computing resources.
Job Execution:RM considers data locality while assigning the resources(Scheduler at this time knows where the splits are located.It gathers this info from the heartbeats of NM. Based on it, it consider data locality when allocating resources. try as best, then consider the rack local nodes ,if still fails, it will pick random from available noedes).AM then communicates node managers which launches the yarn child(a java program the main class is YarnChild,seperate JVM from long running system demons from the suer code). yarn child retrieves the code and other resource from HDFS and then run the tasks(mr).Yan child sends the progress to AM(every 3 seconds) which aggregrates(each yarn client's information) the report and sends the report to the client.
Job Exmpletion:On job completion , yarn child and AM terminates themseves for the next job.

 

MR execution in YARN的更多相关文章

  1. Yarn源码分析之MRAppMaster上MapReduce作业处理总流程(一)

    我们知道,如果想要在Yarn上运行MapReduce作业,仅需实现一个ApplicationMaster组件即可,而MRAppMaster正是MapReduce在Yarn上ApplicationMas ...

  2. hadoop多机安装HA+YARN

    HA 相比于Hadoop1.0,Hadoop 2.0中的HDFS增加了两个重大特性,HA(热备)和Federation(联邦).HA即为High Availability,用于解决NameNode单点 ...

  3. hadoop多机安装YARN

    hadoop伪分布安装称为测试环境安装,多机分布称为生成环境安装.以下安装没有进行HA(热备)和Federation(联邦).除非是性能需要,否则没必要安装Federation,HA可以一试,涉及到Z ...

  4. Hadoop2.4.1 64-Bit QJM HA and YARN HA + Zookeeper-3.4.6 + Hbase-0.98.8-hadoop2-bin HA Install

    Hadoop2.4.1 64-Bit QJM HA and YARN HA Install + Zookeeper-3.4.6 + Hbase-0.98.8-hadoop2-bin HA(Hadoop ...

  5. Hadoop 5、HDFS HA 和 YARN

    Hadoop 2.0 产生的背景Hadoop 1.0 中HDFS和MapReduce存在高可用和扩展方面的问题 HDFS存在的问题 NameNode单点故障,难以用于在线场景 NameNode压力过大 ...

  6. YARN的基础配置

    基于HADOOP3.0+Centos7.0的yarn基础配置: 执行步骤:(1)配置集群yarn (2)启动.测试集群(3)在yarn上执行wordcount案例 一.配置yarn集群 1.配置yar ...

  7. YARN的三种调度器的使用

    YRAN提供了三种调度策略 一.FIFO-先进先出调度器 YRAN默认情况下使用的是该调度器,即所有的应用程序都是按照提交的顺序来执行的,这些应用程序都放在一个队列中,只有在前面的一个任务执行完成之后 ...

  8. Hadoop YARN上运行MapReduce程序

    (1)配置集群 (a)配置hadoop-2.7.2/etc/hadoop/yarn-env.sh 配置一下JAVA_HOME export JAVA_HOME=/home/hadoop/bigdata ...

  9. hadoop3.1集成yarn ha

    1.角色分配

随机推荐

  1. mysql导出数据很快,导入很慢

    mysql导出快,导入特别慢的解决方法:在导入时添加两个参数:max_allowed_packet; net_buffer_length --max_allowed_packet   客户端/服务器之 ...

  2. redux-saga框架使用详解及Demo教程

    redux-saga框架使用详解及Demo教程 前面我们讲解过redux框架和dva框架的基本使用,因为dva框架中effects模块设计到了redux-saga中的知识点,可能有的同学们会用dva框 ...

  3. window系统mysql无法输入和无法显示中文的处理配置

    第一步:使用记事本打开mysql安装目录下的"my.ini”文件. # MySQL client library initialization. [client] port= [mysql] ...

  4. meven 配置

    配置meven 自定义文件[User Settings] D:\java\apache-maven-3.5.3\conf\settings.xml settings.xml 新增两端配置信息 < ...

  5. Python-调用系统指令小记

    import subprocess def exec_command(cmd, log_path, **kwargs): with open(log_path, 'w') as f: p = subp ...

  6. git 完善使用中

    GIT 版本库控制: 第一步:Git 的账号注册 url :https://github.com/ 这是git的官网如果第一次打开会这样 中间红色圈内是注册 内容, 第一项是用户名 第二项是邮箱 第三 ...

  7. PHP删除临时文件

    /**    * 下载后直接删除临时文件    */      public function deldir($dir) {        $dh=opendir($dir);        whil ...

  8. scala中“=>”的4种使用场景

    一直以来都对scala中"=>"的使用比较迷茫,也不知道他表示什么意思.今天就它的使用场景列举如下,希望可以共同探讨. 表示函数的返回类型(Function Type) sc ...

  9. 第9章 HBase操作

    目录 9.1 集群环境搭建 1.上传解压HBase安装包 2.hbase-env.sh文件配置 3.hbase-site.xml文件配置 4.regionservers文件配置 5.拷贝hbase到其 ...

  10. inotify和epoll

    参考EventHub.cpp 1.初始化inotify int mINotifyFd = inotify_init(); 2.将要监测的目录添加到inotify int result = inotif ...