Educational Codeforces Round 40 F. Runner's Problem

题意:

给一个$ 3 * m \(的矩阵,问从\)(2,1)$ 出发 走到 \((2,m)\) 的方案数 \(mod 1e9 + 7\), 走的规则和限制如下:

From the cell (i, j) you may advance to:

  • (i - 1, j + 1) — only if i > 1,
  • (i, j + 1), or
  • (i + 1, j + 1) — only if i < 3.

给出了$n $个限制 每个限制如下描述

\(a_i, l_i, r_i l_i <= r_i 1<=a_i <= 3\) 表示第\((a_i, l_i)\) 到 \((a_i, ri)\) 都是不可走的

\(n <= 10000 , m <= 10^{18}\)

思路:

考察没有限制的情况, 写出转移矩阵做快速幂即可

\(\begin{bmatrix} 1& 1 &0 \\ 1& 1 &1 \\ 0& 1 &1 \end{bmatrix}\)

那么给定了限制之后,其实就是转移矩阵在某一段内不会发生变化,处理出每一段做快速幂即可。

最开始我处理每一段的方法有点傻逼,将所有的端点按左开右闭的方式排序,然后对于取出的每一段区间判断第1,2,3行在这段区间内是否有障碍,我采用了对每一行的障碍排序,再用指针的方式来判断是否有障碍。

#include<bits/stdc++.h>
#define LL long long
#define P pair<int,int>
using namespace std;
const int mod = 1e9 + 7;
vector<pair<LL,LL> > a[3];
vector<pair<LL,int> >p;
int n, x;
LL m, l, r;
struct MAT{
int a[3][3];
MAT operator*(const MAT &rhs){
MAT ans;
memset(ans.a, 0, sizeof(ans.a));
for(int i = 0;i < 3;i++){
for(int j = 0;j < 3;j++){
for(int k = 0;k < 3;k++){
ans.a[i][j] = (ans.a[i][j] + 1LL * a[i][k] * rhs.a[k][j] % mod) % mod;
}
}
}
return ans;
}
MAT operator^(LL k){
MAT ans, A = *this;
for(int i = 0;i < 3;i++){
for(int j = 0;j < 3;j++) ans.a[i][j] = (i == j?1:0);
}
for(;k;k >>= 1,A = A * A) if(k & 1) ans = ans * A;
return ans;
}
}mat; int b[3][3];
void init(){
b[0][0] = b[0][1] = 1;
b[1][0] = b[1][1] = b[1][2] = 1;
b[2][1] = b[2][2] = 1;
b[0][2] = b[2][0] = 0;
}
void gao(int row){
for(int i = 0;i < 3;i++) mat.a[row][i] = 0;
}
int main()
{
init();
cin>>n>>m;
for(int i = 0;i < n;i++){
scanf("%d%lld%lld",&x,&l,&r);
a[x - 1].push_back(make_pair(l,r));
p.push_back(make_pair(l - 1, 0));
p.push_back(make_pair(r, 1));
}
p.push_back(make_pair(1,0));
p.push_back(make_pair(m, 1));
sort(p.begin(),p.end());
p.erase(unique(p.begin(),p.end()),p.end()); for(int i = 0;i < 3;i++) sort(a[i].begin(),a[i].end()); LL mxr[3] = {1,1,1};
LL ans[3] = {0,1,0};
int now[3] = {0};
l = p[0].first;
for(int i = 1; i < p.size();i++){
r = p[i].first;
memcpy(mat.a, b, sizeof(b));
for(int j = 0;j < 3;j++){
int &xx = now[j];
while(xx < a[j].size() && a[j][xx].first <= l + 1 &&
(mxr[j] = max(a[j][xx].second,mxr[j])) < r) xx++;
if(xx < a[j].size() && a[j][xx].first <= l + 1 && mxr[j] >= r){
gao(j);
}
} mat = mat ^ (r - l);
LL tmp[3] = {0};
for(int j = 0;j < 3;j++){
for(int k = 0;k < 3;k++) {
tmp[j] += 1LL * mat.a[j][k] * ans[k] % mod;
tmp[j] %= mod; }
memcpy(ans, tmp, sizeof(tmp));
l = p[i].first;
}
cout<<ans[1]<<endl;
return 0;
}

实际上存端点的时候 可以把该端点是起点还是终点以及在哪一行存进去,这样就可以单独每一行进行维护。

当某一行遇到一个起点后,意味着该行从这个点开始都是有障碍的,直到遇到一个终点+1 后面才没有障碍,

这样就容易判断的多。

常用的区间标记操作,只是这里一时没有将这个知识用上来,以致于采用前面的做法觉得复杂很多。

#include<bits/stdc++.h>
#define LL long long
#define P pair<int,int>
using namespace std;
const int mod = 1e9 + 7;
int n, x;
LL m, l, r;
struct MAT{
int a[3][3];
MAT operator*(const MAT &rhs){
MAT ans;
memset(ans.a, 0, sizeof(ans.a));
for(int i = 0;i < 3;i++){
for(int j = 0;j < 3;j++){
for(int k = 0;k < 3;k++){
ans.a[i][j] = (ans.a[i][j] + 1LL * a[i][k] * rhs.a[k][j] % mod) % mod;
}
}
}
return ans;
}
MAT operator^(LL k){
MAT ans, A = *this;
for(int i = 0;i < 3;i++){
for(int j = 0;j < 3;j++) ans.a[i][j] = (i == j?1:0);
}
for(;k;k >>= 1,A = A * A) if(k & 1) ans = ans * A;
return ans;
}
};
struct node{
LL x;
int row, f;
node(LL x,int row,int f):x(x),row(row),f(f){};
bool operator<(const node&rhs)const{
return x < rhs.x;
}
};
vector<node> p;
int main()
{ cin>>n>>m;
for(int i = 0;i < n;i++){
scanf("%d%lld%lld",&x,&l,&r);
p.push_back(node(l, x - 1, 1));
p.push_back(node(r + 1, x - 1, -1));
}
p.push_back(node(m + 1, 1, -1));
sort(p.begin(),p.end());
int isobstacle[4] = {0};
MAT ans;
for(int i = 0;i < 3;i++) for(int j = 0;j < 3;j++) ans.a[i][j] = (i == j?1:0);
l = 1;
for(int i = 0; i < p.size();i++){
r = p[i].x;
LL d = r - l - 1; /// 区间左闭右开
if(d){
MAT mat;
for(int i = 0;i < 3;i++){ // 初始化转移矩阵
for(int j = 0;j < 3;j++) {
if(!isobstacle[i] && abs(i - j) <= 1) mat.a[i][j] = 1;
else mat.a[i][j] = 0;
}
}
ans = (mat ^ d) * ans;
}
isobstacle[p[i].row] += p[i].f;
l = r - 1;
}
cout<<ans.a[1][1]<<endl;
return 0;
}

Educational Codeforces Round 40 F. Runner's Problem的更多相关文章

  1. Educational Codeforces Round 40千名记

    人生第二场codeforces.然而遇上了Education场这种东西 Educational Codeforces Round 40 下午先在家里睡了波觉,起来离开场还有10分钟. 但是突然想起来还 ...

  2. Educational Codeforces Round 40 C. Matrix Walk( 思维)

    Educational Codeforces Round 40 (Rated for Div. 2) C. Matrix Walk time limit per test 1 second memor ...

  3. Educational Codeforces Round 40 (Rated for Div. 2) Solution

    从这里开始 小结 题目列表 Problem A Diagonal Walking Problem B String Typing Problem C Matrix Walk Problem D Fig ...

  4. Educational Codeforces Round 40 I. Yet Another String Matching Problem

    http://codeforces.com/contest/954/problem/I 给你两个串s,p,求上一个串的长度为|p|的所有子串和p的差距是多少,两个串的差距就是每次把一个字符变成另一个字 ...

  5. Educational Codeforces Round 61 F 思维 + 区间dp

    https://codeforces.com/contest/1132/problem/F 思维 + 区间dp 题意 给一个长度为n的字符串(<=500),每次选择消去字符,连续相同的字符可以同 ...

  6. Educational Codeforces Round 51 F. The Shortest Statement(lca+最短路)

    https://codeforces.com/contest/1051/problem/F 题意 给一个带权联通无向图,n个点,m条边,q个询问,询问两点之间的最短路 其中 m-n<=20,1& ...

  7. Educational Codeforces Round 12 F. Four Divisors 求小于x的素数个数(待解决)

    F. Four Divisors 题目连接: http://www.codeforces.com/contest/665/problem/F Description If an integer a i ...

  8. Educational Codeforces Round 26 F. Prefix Sums 二分,组合数

    题目链接:http://codeforces.com/contest/837/problem/F 题意:如题QAQ 解法:参考题解博客:http://www.cnblogs.com/FxxL/p/72 ...

  9. Educational Codeforces Round 9 F. Magic Matrix 最小生成树

    F. Magic Matrix 题目连接: http://www.codeforces.com/contest/632/problem/F Description You're given a mat ...

随机推荐

  1. 【JUC源码解析】AQS

    简介 AQS,也即AbstractQueuedSynchronizer,抽象队列同步器,提供了一个框架,可以依赖它实现阻塞锁和相关同步器.有两种类型,独占式(Exclusive)和共享式(Share) ...

  2. 机器学习的5种“兵法"

    大数据文摘作品,欢迎个人转发朋友圈,自媒体.媒体.机构转载务必申请授权,后台留言“机构名称+转载”,申请过授权的不必再次申请,只要按约定转载即可. 作者:Jason Brownlee 译者:Clair ...

  3. Adobe Photoshop CC2018最新教程+某宝店铺装修教程

    PS免费教程,ps淘宝店铺装修教程.该资源为本人从某商网站重金买来,现免费分享给大家,下载地址:百度网盘,https://pan.baidu.com/s/127PjFbGwVVUVce1litHFsw

  4. Vs2015 遇到 CL:fatal error c1510 cannot load language clui.dll

    网上说什么点击修复VS,修改VS的,经验证都不好使,直接下载这个库,放在system32/64下面皆可以了

  5. springboot在application.yml中使用了context-path属性导致静态资源法加载,如不能引入vue.js,jquery.js,css等等

    在springBoot配置中加入上下文路径 server.context-path=/csdn js,img等静态文件无法加载,出现404的问题 <script type="text/ ...

  6. (C#)原型模式—深复制与浅复制

    1.原型模式 用原型实例指定创建对象的实例,并且通过拷贝这些原型创建新的对象. *原型模式隐藏了创建对象的细节,提高了性能. *浅复制:被复制对象的所有变量都含有与原来对象相同的值,而且所有对其他对象 ...

  7. Siki_Unity_2-10_数据结构与算法

    Unity 2-10 数据结构与算法 任务1-1:数据结构简介 数据结构:数据存储的结构,数据之间的关系 数据结构分类: 集合:同属于一个集合 线性结构:数据元素存在一对一的关系 树形结构:数据元素存 ...

  8. 简单的switch嵌套

    //添加list数据 1 public static void main(String[] args) { List<String> al = new ArrayList<Strin ...

  9. SIG蓝牙mesh笔记5_Provisionging

    目录 Bluetooth Mesh Provisioning Provisioning bearer layer Generic Provisioning PDU Bluetooth Mesh Pro ...

  10. mysql 导入 大sql文件

    任务:第一次用mysql,需要将一个1G左右的sql文件导入: 步骤:1:安装mysql-installer-community-5.7.20.0.msi 64位安装包 2:命令行登录:  mysql ...