Educational Codeforces Round 40 F. Runner's Problem

题意:

给一个$ 3 * m \(的矩阵,问从\)(2,1)$ 出发 走到 \((2,m)\) 的方案数 \(mod 1e9 + 7\), 走的规则和限制如下:

From the cell (i, j) you may advance to:

  • (i - 1, j + 1) — only if i > 1,
  • (i, j + 1), or
  • (i + 1, j + 1) — only if i < 3.

给出了$n $个限制 每个限制如下描述

\(a_i, l_i, r_i l_i <= r_i 1<=a_i <= 3\) 表示第\((a_i, l_i)\) 到 \((a_i, ri)\) 都是不可走的

\(n <= 10000 , m <= 10^{18}\)

思路:

考察没有限制的情况, 写出转移矩阵做快速幂即可

\(\begin{bmatrix} 1& 1 &0 \\ 1& 1 &1 \\ 0& 1 &1 \end{bmatrix}\)

那么给定了限制之后,其实就是转移矩阵在某一段内不会发生变化,处理出每一段做快速幂即可。

最开始我处理每一段的方法有点傻逼,将所有的端点按左开右闭的方式排序,然后对于取出的每一段区间判断第1,2,3行在这段区间内是否有障碍,我采用了对每一行的障碍排序,再用指针的方式来判断是否有障碍。

#include<bits/stdc++.h>
#define LL long long
#define P pair<int,int>
using namespace std;
const int mod = 1e9 + 7;
vector<pair<LL,LL> > a[3];
vector<pair<LL,int> >p;
int n, x;
LL m, l, r;
struct MAT{
int a[3][3];
MAT operator*(const MAT &rhs){
MAT ans;
memset(ans.a, 0, sizeof(ans.a));
for(int i = 0;i < 3;i++){
for(int j = 0;j < 3;j++){
for(int k = 0;k < 3;k++){
ans.a[i][j] = (ans.a[i][j] + 1LL * a[i][k] * rhs.a[k][j] % mod) % mod;
}
}
}
return ans;
}
MAT operator^(LL k){
MAT ans, A = *this;
for(int i = 0;i < 3;i++){
for(int j = 0;j < 3;j++) ans.a[i][j] = (i == j?1:0);
}
for(;k;k >>= 1,A = A * A) if(k & 1) ans = ans * A;
return ans;
}
}mat; int b[3][3];
void init(){
b[0][0] = b[0][1] = 1;
b[1][0] = b[1][1] = b[1][2] = 1;
b[2][1] = b[2][2] = 1;
b[0][2] = b[2][0] = 0;
}
void gao(int row){
for(int i = 0;i < 3;i++) mat.a[row][i] = 0;
}
int main()
{
init();
cin>>n>>m;
for(int i = 0;i < n;i++){
scanf("%d%lld%lld",&x,&l,&r);
a[x - 1].push_back(make_pair(l,r));
p.push_back(make_pair(l - 1, 0));
p.push_back(make_pair(r, 1));
}
p.push_back(make_pair(1,0));
p.push_back(make_pair(m, 1));
sort(p.begin(),p.end());
p.erase(unique(p.begin(),p.end()),p.end()); for(int i = 0;i < 3;i++) sort(a[i].begin(),a[i].end()); LL mxr[3] = {1,1,1};
LL ans[3] = {0,1,0};
int now[3] = {0};
l = p[0].first;
for(int i = 1; i < p.size();i++){
r = p[i].first;
memcpy(mat.a, b, sizeof(b));
for(int j = 0;j < 3;j++){
int &xx = now[j];
while(xx < a[j].size() && a[j][xx].first <= l + 1 &&
(mxr[j] = max(a[j][xx].second,mxr[j])) < r) xx++;
if(xx < a[j].size() && a[j][xx].first <= l + 1 && mxr[j] >= r){
gao(j);
}
} mat = mat ^ (r - l);
LL tmp[3] = {0};
for(int j = 0;j < 3;j++){
for(int k = 0;k < 3;k++) {
tmp[j] += 1LL * mat.a[j][k] * ans[k] % mod;
tmp[j] %= mod; }
memcpy(ans, tmp, sizeof(tmp));
l = p[i].first;
}
cout<<ans[1]<<endl;
return 0;
}

实际上存端点的时候 可以把该端点是起点还是终点以及在哪一行存进去,这样就可以单独每一行进行维护。

当某一行遇到一个起点后,意味着该行从这个点开始都是有障碍的,直到遇到一个终点+1 后面才没有障碍,

这样就容易判断的多。

常用的区间标记操作,只是这里一时没有将这个知识用上来,以致于采用前面的做法觉得复杂很多。

#include<bits/stdc++.h>
#define LL long long
#define P pair<int,int>
using namespace std;
const int mod = 1e9 + 7;
int n, x;
LL m, l, r;
struct MAT{
int a[3][3];
MAT operator*(const MAT &rhs){
MAT ans;
memset(ans.a, 0, sizeof(ans.a));
for(int i = 0;i < 3;i++){
for(int j = 0;j < 3;j++){
for(int k = 0;k < 3;k++){
ans.a[i][j] = (ans.a[i][j] + 1LL * a[i][k] * rhs.a[k][j] % mod) % mod;
}
}
}
return ans;
}
MAT operator^(LL k){
MAT ans, A = *this;
for(int i = 0;i < 3;i++){
for(int j = 0;j < 3;j++) ans.a[i][j] = (i == j?1:0);
}
for(;k;k >>= 1,A = A * A) if(k & 1) ans = ans * A;
return ans;
}
};
struct node{
LL x;
int row, f;
node(LL x,int row,int f):x(x),row(row),f(f){};
bool operator<(const node&rhs)const{
return x < rhs.x;
}
};
vector<node> p;
int main()
{ cin>>n>>m;
for(int i = 0;i < n;i++){
scanf("%d%lld%lld",&x,&l,&r);
p.push_back(node(l, x - 1, 1));
p.push_back(node(r + 1, x - 1, -1));
}
p.push_back(node(m + 1, 1, -1));
sort(p.begin(),p.end());
int isobstacle[4] = {0};
MAT ans;
for(int i = 0;i < 3;i++) for(int j = 0;j < 3;j++) ans.a[i][j] = (i == j?1:0);
l = 1;
for(int i = 0; i < p.size();i++){
r = p[i].x;
LL d = r - l - 1; /// 区间左闭右开
if(d){
MAT mat;
for(int i = 0;i < 3;i++){ // 初始化转移矩阵
for(int j = 0;j < 3;j++) {
if(!isobstacle[i] && abs(i - j) <= 1) mat.a[i][j] = 1;
else mat.a[i][j] = 0;
}
}
ans = (mat ^ d) * ans;
}
isobstacle[p[i].row] += p[i].f;
l = r - 1;
}
cout<<ans.a[1][1]<<endl;
return 0;
}

Educational Codeforces Round 40 F. Runner's Problem的更多相关文章

  1. Educational Codeforces Round 40千名记

    人生第二场codeforces.然而遇上了Education场这种东西 Educational Codeforces Round 40 下午先在家里睡了波觉,起来离开场还有10分钟. 但是突然想起来还 ...

  2. Educational Codeforces Round 40 C. Matrix Walk( 思维)

    Educational Codeforces Round 40 (Rated for Div. 2) C. Matrix Walk time limit per test 1 second memor ...

  3. Educational Codeforces Round 40 (Rated for Div. 2) Solution

    从这里开始 小结 题目列表 Problem A Diagonal Walking Problem B String Typing Problem C Matrix Walk Problem D Fig ...

  4. Educational Codeforces Round 40 I. Yet Another String Matching Problem

    http://codeforces.com/contest/954/problem/I 给你两个串s,p,求上一个串的长度为|p|的所有子串和p的差距是多少,两个串的差距就是每次把一个字符变成另一个字 ...

  5. Educational Codeforces Round 61 F 思维 + 区间dp

    https://codeforces.com/contest/1132/problem/F 思维 + 区间dp 题意 给一个长度为n的字符串(<=500),每次选择消去字符,连续相同的字符可以同 ...

  6. Educational Codeforces Round 51 F. The Shortest Statement(lca+最短路)

    https://codeforces.com/contest/1051/problem/F 题意 给一个带权联通无向图,n个点,m条边,q个询问,询问两点之间的最短路 其中 m-n<=20,1& ...

  7. Educational Codeforces Round 12 F. Four Divisors 求小于x的素数个数(待解决)

    F. Four Divisors 题目连接: http://www.codeforces.com/contest/665/problem/F Description If an integer a i ...

  8. Educational Codeforces Round 26 F. Prefix Sums 二分,组合数

    题目链接:http://codeforces.com/contest/837/problem/F 题意:如题QAQ 解法:参考题解博客:http://www.cnblogs.com/FxxL/p/72 ...

  9. Educational Codeforces Round 9 F. Magic Matrix 最小生成树

    F. Magic Matrix 题目连接: http://www.codeforces.com/contest/632/problem/F Description You're given a mat ...

随机推荐

  1. leetcode笔记--7 Find the Difference

    question: Given two strings s and t which consist of only lowercase letters. String t is generated b ...

  2. 使用es6总结笔记

    1. let.const 和 block 作用域 在ES6以前,var关键字声明变量.无论声明在何处,都会被视为声明在函数的最顶部(不在函数内即在全局作用域的最顶部). let 关键词声明的变量不具备 ...

  3. 查看python中包的文档

    核心命令:python -m pydoc 查询某包:python -m pydoc 包名 示例: C:\Users\xxx>python -m pydoc pydoc - the Python ...

  4. Too many open files错误与解决方法

    致前辈:该问题的解决思路给了我很大的启发,文章作者Lis, Linux资深技术专家. 问题现象:这是一个基于Java的web应用系统,在后台添加数据时提示无法添加,于是登陆服务器查看Tomcat 日志 ...

  5. 自测之Lesson6:文件I/O

    题目:区分文件I/O和标准I/O. 区别: ①首先两者一个显著的不同点在于,标准I/O默认采用了缓冲机制,比如调用fopen函数,不仅打开一个文件,而且建立了一个缓冲区(读写模式下将建立两个缓冲区), ...

  6. JavaScript初探系列之面向对象

    面向对象的语言有一个标志,即拥有类的概念,抽象实例对象的公共属性与方法,基于类可以创建任意多个实例对象,一般具有封装.继承.多态的特性!但JS中对象与纯面向对象语言中的对象是不同的,ECMA标准定义J ...

  7. lintcode-189-丢失的第一个正整数

    189-丢失的第一个正整数 给出一个无序的正数数组,找出其中没有出现的最小正整数. 样例 如果给出 [1,2,0], return 3 如果给出 [3,4,-1,1], return 2 挑战 只允许 ...

  8. iOS-根据两个经纬度计算相距距离

    CLLocation *orig=[[[CLLocation alloc] initWithLatitude:[mainDelegate.latitude_self doubleValue] long ...

  9. 3dContactPointAnnotationTool开发日志(十四)

      貌似每次让用户手动输入文件路径太不人道了,于是参考Unity 实用教程 之 调用系统窗口选择文件或路径增加了让用户浏览文件的功能,点击输入框旁边的+就可以找到文件并加载进来:   貌似调整位置再计 ...

  10. 语音信号处理之动态时间规整(DTW)(转)

    这学期有<语音信号处理>这门课,快考试了,所以也要了解了解相关的知识点.呵呵,平时没怎么听课,现在只能抱佛脚了.顺便也总结总结,好让自己的知识架构清晰点,也和大家分享下.下面总结的是第一个 ...