题目链接

BZOJ3427

题解

容易发现最终序列一定是\(\{-1,0,1\}\)组成的

因为如果有一个位置不是,那么这个位置一定大于\(1\),那么上一个位置一定为\(1\),所以该位置一定加到过\(1\)。由于\(1\)已经满足条件,而经分析得大于\(1\)会使下一个位置的决策不优反劣,所以一定不会大于\(1\)

那么就可以\(dp\)了,设\(f[i][3]\)表示以\(i\)结尾\(i\)为三种数时的最优答案

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 1000005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int f[maxn][3],n,x[maxn];
int main(){
n = read();
REP(i,n) x[i] = read();
for (int i = 0; i <= 2; i++)
if (i != x[1] + 1) f[1][i] = INF;
else f[1][i] = 0;
for (int i = 2; i <= n; i++){
if (x[i] == -1){
f[i][0] = f[i - 1][0];
f[i][1] = INF;
f[i][2] = f[i - 1][2] + 2;
}
else if (!x[i]){
f[i][0] = f[i - 1][0] + 1;
f[i][1] = min(f[i - 1][0],f[i - 1][1]);
f[i][2] = f[i - 1][2] + 1;
}
else {
f[i][0] = f[i - 1][0] + 2;
f[i][1] = f[i - 1][0] + 1;
f[i][2] = min(f[i - 1][0],min(f[i - 1][1],f[i - 1][2]));
}
}
int ans = min(f[n][0],min(f[n][1],f[n][2]));
if (ans >= INF) puts("BRAK");
else printf("%d\n",ans);
return 0;
}

BZOJ3427 Poi2013 Bytecomputer 【dp】的更多相关文章

  1. Kattis - honey【DP】

    Kattis - honey[DP] 题意 有一只蜜蜂,在它的蜂房当中,蜂房是正六边形的,然后它要出去,但是它只能走N步,第N步的时候要回到起点,给出N, 求方案总数 思路 用DP 因为N == 14 ...

  2. HDOJ 1423 Greatest Common Increasing Subsequence 【DP】【最长公共上升子序列】

    HDOJ 1423 Greatest Common Increasing Subsequence [DP][最长公共上升子序列] Time Limit: 2000/1000 MS (Java/Othe ...

  3. HDOJ 1501 Zipper 【DP】【DFS+剪枝】

    HDOJ 1501 Zipper [DP][DFS+剪枝] Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Ja ...

  4. HDOJ 1257 最少拦截系统 【DP】

    HDOJ 1257 最少拦截系统 [DP] Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...

  5. HDOJ 1159 Common Subsequence【DP】

    HDOJ 1159 Common Subsequence[DP] Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K ...

  6. HDOJ_1087_Super Jumping! Jumping! Jumping! 【DP】

    HDOJ_1087_Super Jumping! Jumping! Jumping! [DP] Time Limit: 2000/1000 MS (Java/Others) Memory Limit: ...

  7. POJ_2533 Longest Ordered Subsequence【DP】【最长上升子序列】

    POJ_2533 Longest Ordered Subsequence[DP][最长递增子序列] Longest Ordered Subsequence Time Limit: 2000MS Mem ...

  8. HackerRank - common-child【DP】

    HackerRank - common-child[DP] 题意 给出两串长度相等的字符串,找出他们的最长公共子序列e 思路 字符串版的LCS AC代码 #include <iostream&g ...

  9. LeetCode:零钱兑换【322】【DP】

    LeetCode:零钱兑换[322][DP] 题目描述 给定不同面额的硬币 coins 和一个总金额 amount.编写一个函数来计算可以凑成总金额所需的最少的硬币个数.如果没有任何一种硬币组合能组成 ...

随机推荐

  1. android 几个工具方法

    集合几个工具方法,方便以后使用. 1.获取手机 分辨率屏幕: public static void printScreenInfor(Context context){ DisplayMetrics ...

  2. HTML随笔3

    1. *svg(可伸缩矢量图)标签画圆,其中r表示半径,cx和cy表示其圆心的坐标 <svg><circle r="100" cx="200" ...

  3. Qt-第一个QML程序-4-自定义按钮类,动画,状态

    上篇中,我们写到了自己定义了一个按钮,但是呢,按照这样的写法,要写一个程序出来,那要累死了,所以,qml给我的感觉就是各种随便调用,所以了,可以自己写一个自己Button的qml,这样在以后用到了,就 ...

  4. (C#)设计模式之装饰模式

    1.装饰模式 动态的给一个对象添加一些额外的职责,就添加功能来说,装饰模式比生成子类更加灵活.*装饰模式是为已有功能动态添加更多功能的一种方式.*装饰模式将原有类中的核心职责与装饰功能分离.简化了原有 ...

  5. TW实习日记:第17天

    今天又改了一堆bug,比如界面的显示bug,Html字符串的处理.优化了一些交互界面,处理了一个模块数据传输的问题.我发现这些bug真的有一半是粗心导致的,真的真的是,写代码一定要细心细心再细心,不然 ...

  6. org.apache.spark.sql.functions汇总

    测试数据: id,name,age,comment,date 1,lyy,28,"aaa bbb",20180102020325 scala> var data = spar ...

  7. vivado使用感想

    寒假学了一学期vivado也没有学出什么名堂:为了调试龙芯的五级流水CPU,今天肝了一下午结果还把vivado给摸清楚了,果然是以目标为导向最能出成绩. vivado开发硬件的流程 写代码 模拟仿真s ...

  8. LeetCode 135——分发糖果

    1. 题目 2. 解答 初始化左序奖赏全为 1,从左往右遍历,如果右边的人评分比左边高,右边奖赏比左边奖赏增 1. 初始化右序奖赏全为 1,从右往左遍历,如果左边的人评分比右边高,左边奖赏比右边奖赏增 ...

  9. Java并发简介

    年轻的时候学会了“使用”Servlet后,感觉自己什么都会做了,之后就不停的写所谓的业务逻辑,框架(这里说的不是structs,spring等,就是说servlet)给人们屏蔽了很多复杂性(更别说构建 ...

  10. 基于Kubernetes(k8s)网络方案演进

    VIP PaaS在接近两年时间里,基于kubernetes主要经历四次网络方案的变迁: 1. kubernetes + flannel 2. 基于Docker libnetwork的网络定制 3. k ...