SCOI2009迷路
当初学矩阵幂的时候弃掉了,那时候只会用矩阵优化递推,碰到这种图论的瞬间躺地。
昨天听学长的课,有一道例题,在边权为一的图上求从某点到某点的路径方案数,只要对邻接矩阵跑qpow就完事了。
于是自己画了个小图,手跑矩阵,发现是真的,开始思考why。
其实矩阵幂感觉和floyed很像,c[i][j]=∑a[i][k]*b[k][j],k就像是floyed中的断点,每次进行一次操作就好像走了一步,那么就会有方案数的改变,a到b走两步,可以由k1、k2、k3……过去,那矩阵幂就把这个过程加速了。
至于这种边权不为1的,可以拆成9个点,除了第一个是实点,别的都是虚点,各个点直接连单向边,权为1,表示可以用一的贡献过去,然后有权值直接从i的第val个虚点指向j的第1个点,这样就和原问题等价了。
剩下的就是qpow和最后输出谁了,自己想想,不会的看代码在想想。
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<vector>
#include<queue>
#include<stack>
#include<set>
#include<map>
using namespace std;
const int P=;
int n,k;
char ch[];
int cal(int i,int j){
return (i-)*+j;
}
struct Matrix{
int x[][];
friend Matrix operator * (Matrix a,Matrix b){
Matrix c;
memset(c.x,,sizeof(c.x));
// c.debug();
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
for(int k=;k<=n;k++)
c.x[i][j]=(c.x[i][j]+a.x[i][k]*b.x[k][j])%P;
return c;
}
void add(int a,int b){
x[a][b]=;
return ;
}
void ench(){
for(int i=;i<=n;i++)
x[i][i]=;
return ;
}
void debug(){
for(int i=;i<=n;i++){
for(int j=;j<=n;j++)
cout<<x[i][j]<<" ";
cout<<endl;
}
}
void put(){
printf("%d",x[][n-]);
return ;
}
}a;
void qpow(int k){
Matrix b,c;
c.ench();
// cout<<endl;
// c.debug();
b=a;
for(;k;k>>=,b=b*b)
if(k&) c=c*b;
a=c;
}
int main(){
scanf("%d%d",&n,&k);
for(int i=;i<=n;i++){
for(int j=;j<;j++)
a.add(cal(i,j),cal(i,j+));
scanf("%s",ch+);
for(int j=;j<=n;j++){
if(ch[j]-''==) continue;
a.add(cal(i,ch[j]-''),cal(j,));
}
}n*=;
// a.debug();
qpow(k);
// cout<<endl;
// a.debug();
a.put();
return ;
}
SCOI2009迷路的更多相关文章
- BZOJ 1297: [SCOI2009]迷路( dp + 矩阵快速幂 )
递推式很明显...但是要做矩阵乘法就得拆点..我一开始很脑残地对于每一条权值v>1的边都新建v-1个节点去转移...然后就TLE了...把每个点拆成9个就可以了...时间复杂度O((9N)^3* ...
- 1297: [SCOI2009]迷路
1297: [SCOI2009]迷路 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 652 Solved: 442[Submit][Status] ...
- 【矩阵快速幂】bzoj1297 [SCOI2009]迷路
1297: [SCOI2009]迷路 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1407 Solved: 1007[Submit][Status ...
- [BZOJ 1297][SCOI2009]迷路
1297: [SCOI2009]迷路 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1418 Solved: 1017[Submit][Status ...
- B20J_1297_[SCOI2009]迷路_矩阵乘法
B20J_1297_[SCOI2009]迷路_矩阵乘法 题意:有向图 N 个节点,从节点 0 出发,必须恰好在 T 时刻到达节点 N-1.总共有多少种不同的路径? 2 <= N <= 10 ...
- 【BZOJ1297】[SCOI2009]迷路(矩阵快速幂)
[BZOJ1297][SCOI2009]迷路(矩阵快速幂) 题面 BZOJ 洛谷 题解 因为边权最大为\(9\),所以记录往前记录\(9\)个单位时间前的.到达每个点的方案数就好了,那么矩阵大小就是\ ...
- bzoj1297 / P4159 [SCOI2009]迷路
P4159 [SCOI2009]迷路 如果边权只有 0/1 那么不就是一个灰常简单的矩阵快速幂吗! 然鹅边权 $<=9$ 所以我们把每个点拆成9个点! 解决~ #include<iostr ...
- [Bzoj1297][Scoi2009 ]迷路 (矩阵乘法 + 拆点)
1297: [SCOI2009]迷路 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1385 Solved: 993[Submit][Status] ...
- BZOJ1297: [SCOI2009]迷路 矩阵快速幂
Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同 ...
- 1297. [SCOI2009]迷路【矩阵乘法】
Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同 ...
随机推荐
- B-Tree和 B+Tree的数据存储结构
B+树索引是B+树在数据库中的一种实现,是最常见也是数据库中使用最为频繁的一种索引.B+树中的B代表平衡(balance),而不是二叉(binary),因为B+树是从最早的平衡二叉树演化而来的.在讲B ...
- python之数字类型小知识
数字是表示计数的抽象事物,也是数学运算和推理的基础,所以,生活中数字是生活中无处不在的,那么,在python语言中运用数字有哪些小知识呢,不妨花点时间看一下这篇博文,牢记这些小知识. 整数类型中四种进 ...
- 创建LEANGOO看板
转自:https://www.leangoo.com/leangoo_guide/leangoo_guide_create_kanban.html#toggle-id-3 Leangoo使用看板来管理 ...
- springboot搭建web项目与使用配置文件
目录 一.准备工作 二.创建基础web项目 1. maven配置 2.创建maven项目.配置pom.xml为web基础项目 3.编写启动类 4.使用maven打包 5.使用命令java -jar x ...
- oracle字符集问题随笔
oracle字符集问题: 1.select * from nls_database_parameters where parameter in ('NLS_LANGUAGE','NLS_TERRITO ...
- Creating a PXE Configuration File
The PXE configuration file defines the menu displayed to the pxe client host as it boots up and co ...
- Delphi 卡通控件
樊伟胜
- 九,configMap及secret的基本使用
目录 制定容器配置的方式 configMap(存储数据为明文,敏感数据慎用) 创建configMap的几种方式 命令行创建和测试configMap实例 创建一个Pod 挂载测试 通过指定文件创建con ...
- [工具] fierce--子域收集
简介 fierce 是使用多种技术来扫描目标主机IP地址和主机名的一个DNS服务器枚举工具.运用递归的方式来工作.它的工作原理是先通过查询本地DNS服务器来查找目标DNS服务器,然后使用目标DNS服务 ...
- 第二章 Vue快速入门--13 讲解v-model实现表单元素的数据双向绑定
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8&quo ...