用Keras搭建神经网络 简单模版(五)——RNN LSTM Regressor 循环神经网络
# -*- coding: utf-8 -*-
import numpy as np
np.random.seed(1337)
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.layers import LSTM,TimeDistributed,Dense
from keras.optimizers import Adam BATCH_START = 0
TIME_STEPS = 20
BATCH_SIZE = 50
INPUT_SIZE = 1
OUTPUT_SIZE = 1
CELL_SIZE = 20
LR = 0.006 def get_batch():
global BATCH_START,TIME_STEPS
# xs shape(50,20,)
#xs=np.arange(0,0+20*50).reshape(50,20)
xs = np.arange(BATCH_START,BATCH_START+TIME_STEPS*BATCH_SIZE).reshape((BATCH_SIZE,TIME_STEPS)) / (10*np.pi)
seq = np.sin(xs)
res = np.cos(xs)
BATCH_START += TIME_STEPS
#plt.plot(xs[0,:],res[0,:],'r',xs[0,:],seq[0,:],'b--')
#plt.show()
return [seq[:,:,np.newaxis], res[:,:,np.newaxis],xs] #get_batch()
#exit() model = Sequential() model.add(LSTM(output_dim=CELL_SIZE,
return_sequences=True, # 每一个时间点都输出一个output
batch_input_shape=(BATCH_SIZE,TIME_STEPS,INPUT_SIZE),
stateful = True,# batch和batch之间是否有联系
# 前一个batch的最后一步和后一个batch的第一步是有联系的
)) model.add(TimeDistributed(Dense(OUTPUT_SIZE))) # dense对每一个output连接,对每一个时间点都要计算 adam = Adam(LR)
model.compile(optimizer = adam,
loss = 'mse',) print('Training ------------')
for step in range(501):
# data shape = (batch_num,steps,inputs/output)
X_batch, Y_batch, xs = get_batch()
cost = model.train_on_batch(X_batch, Y_batch)
pred = model.predict(X_batch,BATCH_SIZE)
plt.plot(xs[0,:], Y_batch[0].flatten(),'r',xs[0,:],pred.flatten()[:TIME_STEPS],'b--')
plt.ylim((-1.2,1.2))
plt.draw()
plt.pause(0.5)
if step % 10 == 0:
print('train cost',cost)


用Keras搭建神经网络 简单模版(五)——RNN LSTM Regressor 循环神经网络的更多相关文章
- 用Keras搭建神经网络 简单模版(三)—— CNN 卷积神经网络(手写数字图片识别)
# -*- coding: utf-8 -*- import numpy as np np.random.seed(1337) #for reproducibility再现性 from keras.d ...
- 用Keras搭建神经网络 简单模版(一)——Regressor 回归
首先需要下载Keras,可以看到我用的是TensorFlow 的backend 自己构建虚拟数据,x是-1到1之间的数,y为0.5*x+2,可视化出来 # -*- coding: utf-8 -*- ...
- 用Keras搭建神经网络 简单模版(六)——Autoencoder 自编码
import numpy as np np.random.seed(1337) from keras.datasets import mnist from keras.models import Mo ...
- 用Keras搭建神经网络 简单模版(四)—— RNN Classifier 循环神经网络(手写数字图片识别)
# -*- coding: utf-8 -*- import numpy as np np.random.seed(1337) from keras.datasets import mnist fro ...
- 用Keras搭建神经网络 简单模版(二)——Classifier分类(手写数字识别)
# -*- coding: utf-8 -*- import numpy as np np.random.seed(1337) #for reproducibility再现性 from keras.d ...
- TensorFlow系列专题(七):一文综述RNN循环神经网络
欢迎大家关注我们的网站和系列教程:http://panchuang.net/ ,学习更多的机器学习.深度学习的知识! 目录: 前言 RNN知识结构 简单循环神经网络 RNN的基本结构 RNN的运算过程 ...
- keras搭建密集连接网络/卷积网络/循环网络
输入模式与网络架构间的对应关系: 向量数据:密集连接网络(Dense层) 图像数据:二维卷积神经网络 声音数据(比如波形):一维卷积神经网络(首选)或循环神经网络 文本数据:一维卷积神经网络(首选)或 ...
- 大话循环神经网络(RNN)
在上一篇文章中,介绍了 卷积神经网络(CNN)的算法原理,CNN在图像识别中有着强大.广泛的应用,但有一些场景用CNN却无法得到有效地解决,例如: 语音识别,要按顺序处理每一帧的声音信息,有些结果 ...
- RNN循环神经网络学习——概述
循环神经网络(Recurrent Neural NetWork,RNN)是一种将节点定向连接成环的人工神经网络,其内部状态可以展示动态时序行为. 循环神经网络的主要用途是处理和预测序列数据.循环神经网 ...
随机推荐
- python-----将图片与标注的xml坐标水平翻转
我们做机器学习的时候,总会用到很多训练集,然后我们的数据比较少的时候,就可以将图片翻转标注.代码如下: #!/usr/bin/env python # -*- coding: utf-8 -*- # ...
- PAT Advanced 1008 Elevator (20 分)
The highest building in our city has only one elevator. A request list is made up with N positive nu ...
- Pycharm----默认字体大小的设置
设定前 设定后,修改字体的大小为:15号 设置方式:按照截图操作选择后,点击”apply“即可
- date对象获取get
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- [Google Guava] 1.5-Throwables:简化异常和错误的传播与检查
原文链接 译者: 沈义扬 异常传播 有时候,你会想把捕获到的异常再次抛出.这种情况通常发生在Error或RuntimeException被捕获的时候,你没想捕获它们,但是声明捕获Throwable和E ...
- [React] Create a Query Parameter Modal Route with React Router
Routes are some times better served as a modal. If you have a modal (like a login modal) that needs ...
- Task异步
快速示例 class Program { static void Main(string[] args) { //Console.WriteLine("main start..") ...
- Codeforces Round #590 (Div. 3)【D题:26棵树状数组维护字符出现次数】
A题 题意:给你 n 个数 , 你需要改变这些数使得这 n 个数的值相等 , 并且要求改变后所有数的和需大于等于原来的所有数字的和 , 然后输出满足题意且改变后最小的数值. AC代码: #includ ...
- fadeTo([[speed],opacity,[easing],[fn]])
fadeTo([[speed],opacity,[easing],[fn]]) 概述 把所有匹配元素的不透明度以渐进方式调整到指定的不透明度,并在动画完成后可选地触发一个回调函数.大理石机械构件维修 ...
- Excel2013下拉框选择自动填充颜色
图一写判断公式,图二选择应用范围.