「NOI十联测」奥义商店

若lzz想花费最少的钱,那么显然要选择数目较少的颜色。

先考虑暴力的写法。

每次向两边统计,每个物品要求被买的概率可以由上一个物品推出。

now=1;//now 被买概率 M 选择的颜色的数目
for(int q=1;st+d*q<=n&&q<=cnt[1];++q){
now*=(M-q+1.0)/(n-1-q+1);//当前点被涂上选择的颜色的概率 * 先前的物品也涂上选择的颜色
ans+=val[st+d*q]*now;
}
now=1;
for(int q=1;st-d*q>0&&q<=cnt[1];++q){//同上
now*=(M-q+1.0)/(n-1-q+1);
ans+=val[st-d*q]*now;
}

观察到,当\(2 \leq t\),那么\(M \leq {n \over 2}\),而此时now的衰减极快,大约可以在\(log_2(10^8)\)次数内不再对答案的有贡献(精度问题)。因此可以做到查询复杂度\(o(log)\),修改复杂度\(o(1)\)。

当\(t=1\),颜色只有一种,故只要是在等差序列上的点,都要被选中。

​ 对于\(\sqrt n \leq d\)的情况,可以暴力计算,询问复杂度\(o(\sqrt n)\),修改复杂度\(o(1 )\)。

​ 对于\(\sqrt n \geq d\)的情况,可以对每个d和每个起始点都预处理一遍答案,询问复杂度\(o(1)\),修改复杂度\(o(\sqrt n )\)。

故可以得到时间和空间都为\(o(n \sqrt n)\)的算法。

#include<bits/stdc++.h>
#define rep(q,a,b) for(int q=a,q##_end_=b;q<=q##_end_;++q)
#define dep(q,a,b) for(int q=a,q##_end_=b;q>=q##_end_;--q)
#define mem(a,b) memset(a,b,sizeof a )
#define debug(a) cerr<<#a<<' '<<a<<"___"<<endl
using namespace std;
void in(int &r) {
static char c;
r=0;
while(c=getchar(),c<48);
do r=(r<<1)+(r<<3)+(c^48);
while(c=getchar(),c>47);
}
bool cur1;
const int mn=100005;
int n,m,val[mn];
int sq,sum[330][330];
void get1(int st,int d){
if(d<=sq)printf("%.4lf\n",(double)sum[d][st%d]);
else{
int ans=val[st];
for(int q=1;st+d*q<=n;++q)ans+=val[st+d*q];
for(int q=1;st-d*q>0;++q)ans+=val[st-d*q];
printf("%.4lf\n",(double)ans);
}
}
void get(int col,int st,int d,int M){
double ans=val[st],now=1;
for(int q=1;st+d*q<=n&&q<=M;++q){
if(now<1e-10)break;
now*=(M-q+1.0)/(n-1-q+1);
ans+=val[st+d*q]*now;
}
now=1;
for(int q=1;st-d*q>0&&q<=M;++q){
if(now<1e-10)break;
now*=(M-q+1.0)/(n-1-q+1);
ans+=val[st-d*q]*now;
}
printf("%.4lf\n",ans);
}
void change(int x,int v){
int d=v-val[x];
val[x]=v;
rep(w,1,sq)sum[w][x%w]+=d;
}
bool cur2;
int main(){
// cerr<<(&cur1-&cur2)/1024.0/1024.0;
freopen("lzz.in","r",stdin);
freopen("lzz.out","w",stdout);
in(n),in(m);
rep(q,1,n)in(val[q]);
sq=sqrt(n)+1;
rep(q,1,sq)rep(w,1,n)sum[q][w%q]+=val[w];
int a,b,c,d;
while(m--){
in(a),in(b),in(c);
if(a==1)change(b,c);
else{
in(d);
int M=1e9;
rep(q,1,b)in(a),M=min(a,M);
if(b==1)get1(c,d);
else get(b,c,d,M);
}
}
return 0;
}

「NOI十联测」奥义商店的更多相关文章

  1. 「NOI十联测」深邃

    「NOI十联测」深邃 要使得最大的连通块最小,显然先二分答案. 先固定1结点为根. 对于一个果实,显然是先处理子树中未分配的点,再向外延伸. 每个结点记录一个\(si[]\),表示子树中未分配的点数, ...

  2. 「NOI十联测」黑暗

    「NOI十联测」黑暗 \(n\) 个点的无向图,每条边都可能存在,一个图的权值是连通块个数的 \(m\) 次方,求所有可能的图的权值和.(n≤30000,m≤15) 令\(ans[n][m]\)为n个 ...

  3. 「NOI十联测」反函数

    30pts 令(为1,)为-1: 暴力枚举每个点为起始点的路径,一条路径是合法的当且仅当路径权值和为0且路径上没有出现过负数. 将所有答案算出. 100pts 使用点分治. 要求知道经过重心root的 ...

  4. HHHOJ #153. 「NOI模拟 #2」Kotomi

    抽代的成分远远大于OI的成分 首先把一个点定为原点,然后我们发现如果我们不旋转此时答案就是所有位置的\(\gcd\) 如果要选择怎么办,我们考虑把我们选定的网格边连同方向和大小看做单位向量\(\vec ...

  5. HHHOJ #151. 「NOI模拟 #2」Nagisa

    计算几何板子题(我才没有拷板子的说--) 众所周知,三角形的重心坐标是\((\frac{x_1+x_2+x_3}{3},\frac{y_1+y_2+y_3}{3})\) 然后我们发现如果我们有一个点集 ...

  6. Solution -「NOI 模拟赛」彩色挂饰

    \(\mathcal{Description}\)   给定一个含 \(n\) 个点 \(m\) 条边的简单无向图,设图中最大点双的大小为 \(s\),则保证 \(s\le6\).你将要用 \(k\) ...

  7. Solution -「NOI 模拟赛」出题人

    \(\mathcal{Description}\)   给定 \(\{a_n\}\),求一个 \(\{b_{n-1}\}\),使得 \(\forall x\in\{a_n\},\exists i,j\ ...

  8. 「洛谷 P1801」黑匣子

    好像很久没有更过博客了,因为博主这几周很忙.其实是在搞颓. 题意很难懂,所以就不重复了.其实是懒. 一眼看上去这是个 \(Splay\) 裸题,直接插入一个数,查询区间第 \(K\) 大,但是这样太不 ...

  9. Diary -「NOI 2021」酱油记

    雨幕浓稠 远近一白 是水雾弥漫的天 还是泡沫撑起的海   雨真大呢.   前几天去 ZH 中学集训没啥好记的,就从会合日开始叭. [Day -1]   逃出 ZH,掉入梦麟.(   高中的同学们忘记带 ...

随机推荐

  1. 第十八个知识点:画一个描述ECB,CBC,CTR模式的操作

    第十八个知识点:画一个描述ECB,CBC,CTR模式的操作 第8周是画三个图的任务,但是维基百科上已经有人画的很好了 https://en.wikipedia.org/wiki/File:ECB_en ...

  2. electron串口通信使用serialport安装报错

    1.报错信息没有安装python环境 1 gyp ERR! find Python 2 gyp ERR! find Python Python is not set from command line ...

  3. 分享一篇:sql语句中使用子查询,可能会引起查询的性能问题,查询时间会变长

    前段时间,做自动化适配的时候,查找需要的数据的时候,使用到了dblink,跨数据库实例进行访问,整段sql拼接再加上dblink,在plsql查询的时候,性能还不是很长时间,最多2分钟可以查到,前期调 ...

  4. vi中使用鼠标右键插入时进入(insert)visual模式

    使用vim插入外面复制的内容时,用右键点击后,并未将内容粘贴进去,而是进入了(insert)visual模式,解决方法:先shift+enter进入普通模式输入 set mouse-=a然后再i进入i ...

  5. webSocket 使用 HttpSession 的数据配置与写法

    1.前言 webSoket 无法获取 HttpSession  ,使用就更谈不上了 !!! 2解决过程 使用   configurator  注入即可 (1) 配置一个类 1 package cn.c ...

  6. 简单的sdn防火墙

    github仓库 演示视频 本次实验建立的拓扑 使用到的 pox 指令介绍,参考pox控制器学习笔记 1. forwarding.l2_learning 使OpenFlow交换机充当L2学习交换机的一 ...

  7. 你不得不了解的Python3.x新特性

    从 3.0 到 3.8,Python 3 已经更新了一波又一波,但似乎我们用起来和 2.7 没有太大区别?以前该怎么写 2.7 的代码现在就怎么写,只不过少数表达方式变了而已.在这篇文章中,作者介绍了 ...

  8. efcore使用ShardingCore实现分表分库下的多租户

    efcore使用ShardingCore实现分表分库下的多租户 介绍 本期主角:ShardingCore 一款ef-core下高性能.轻量级针对分表分库读写分离的解决方案,具有零依赖.零学习成本.零业 ...

  9. Vulnhub系列:Os-hackNos

    0x01环境搭建 靶机链接: https://www.vulnhub.com/entry/hacknos-os-hacknos,401/发布日期: 2019.11.27靶机描述: 描述 难度:容易中级 ...

  10. 理解Cookie和Session机制,及其安全问题

    大家常说"Cookie保存在客户端而Session保存在服务端",很多人看了有疑惑,明明Session就在Cookie中啊,为什么这么说?二者到底有啥区别? 一.Cookie 首先 ...