01背包

呐,为什么叫它01背包呢,因为装进去就是1,不装进去就是0.所以针对每个物品就两种状态,装,不装(请允许我用这么老套的开篇,相信听过很多次背包讲解的人,大多都是这个开篇的)所以咯,我这个背包啊,只要有足够大的空间,这个物品是有可能被装进去的咯。
所以有状态转移方程
dp[i][j] = max( dp[i-1][j] , dp[i-1][ j - weight[i] ] + value[i] )
然后二维数组的代码写法分分钟就出来了,反正都是跟前一个状态去转移,也没有什么写法上的限制。

代码

并不优化

#include<bits/stdc++.h>
using namespace std;
int dp[1005][1005];
int weight[1005];
int value[1005];
int main()
{
int n,m;
cin>>m>>n;
memset(dp,0,sizeof(dp));//数组清空,其实同时就把边界给做了清理
for(int i=1; i<=n; i++)
cin>>weight[i]>>value[i];
//从1开始有讲究的因为涉及到dp[i-1][j],从0开始会越界
for(int i=1; i<=n; i++)//判断每个物品能否放进
{
for(int j=0; j<=m; j++)//对每个状态进行判断
//这边两重for都可以倒着写,只是需要处理最边界的情况,滚动数组不一样
{
if(j>=weight[i])//能放进
dp[i][j]=max(dp[i-1][j],dp[i-1][j-weight[i]]+value[i]); else dp[i][j]=dp[i-1][j];//不能放进
}
}
cout<<dp[n][m]<<endl;
return 0;
}

因为很容易超内存

用滚动数组优化

#include<bits/stdc++.h>
using namespace std;
int dp[1005];//滚动数组的写法,省下空间
int weight[1005];
int value[1005];
int main()
{
int n,m;
cin>>m>>n;
memset(dp,0,sizeof(dp));
for(int i=1; i<=n; i++)
cin>>weight[i]>>value[i];
for(int i=1; i<=n; i++){ //对每个数判断,可反
for(int j=m; j>=weight[i]; j--) {//这里这个循环定死,不能反,反了就是完全背包
dp[j]=max(dp[j],dp[j-weight[i]]+value[i]);//其实不断在判断最优解,一层一层的
}
}
cout<<dp[m]<<endl;
return 0;
}

完全背包

就像先前讲的,完全背包是每个物品都无限,那么我只要对着一个性价比最高的物品狂选就是了啊。??
是吗?有瑕疵啊!
反例一批一批的啊,认死了选性价比最高的,不一定是完全填满背包的啊,万一最后一个是刚好填满背包的,而且价格凑起来刚好比全选性价比最高的物品高的情况比比皆是啊。
啊?什么,特判最后一个状态?
你在搞笑吗|||- -,那我再往前推到倒数第二件,第三件咋办。总不能对每个物品都特判吧。
所以正解就是动态规划。状态转移方程如下:
dp[i][j] = max ( dp[i-1][j - k*weight[i]] +k*value[i] ) ( 0<=k*weight[i]<=m)

代码

#include<bits/stdc++.h>
using namespace std;
int dp[100005];//m
struct Node{
int a,b;
}node[1005];//n int main(){
int n;
while(~scanf("%d",&n)){
for(int i=0;i<n;i++){
scanf("%d%d",&node[i].a,&node[i].b);
}
int m;
scanf("%d",&m);
memset(dp,0,sizeof(dp));
for(int i=0;i<n;i++){
for(int j=node[i].b;j<=m;j++){//这样就是完全背包
dp[j]=max(dp[j],dp[j-node[i].b]+node[i].a);
}
}
printf("%d\n",dp[m]);
}
return 0;
}

多重背包

理解了前面两种背包,那么第三种背包理解起来就毫不费力了
首先这种可以把物品拆开,把相同的num[i]件物品 看成 价值跟重量相同的num[i]件不同的物品,那么!!是不是就转化成了一个规模稍微大一点的01背包了。
那只是一种理解方法,其实正规的应该是这样的
dp[i][j] = max ( dp[i-1][j - k*weight[i]] +k*value[i] ) 0<=k<=num[i](这个跟完全背包差点就一毛一样了)
那么还是用滚动数组来写,而且还又优化了下

代码

#include<bits/stdc++.h>
using namespace std;
const int N = 1005; int dp[N];
int c[N],w[N],num[N];
int n,m; void ZeroOne_Pack(int cost,int weight,int n)//吧01背包封装成函数
{
for(int i=n; i>=cost; i--)
dp[i] = max(dp[i],dp[i-cost] + weight);
} void Complete_Pack(int cost,int weight,int n)//把完全背包封装成函数
{
for(int i=cost; i<=n; i++)
dp[i] = max(dp[i],dp[i-cost] + weight);
} int Multi_Pack(int c[],int w[],int num[],int n,int m)//多重背包
{
memset(dp,0,sizeof(dp));
for(int i=1; i<=n; i++)//遍历每种物品
{
if(num[i]*c[i] > m)
Complete_Pack(c[i],w[i],m);
//如果全装进去已经超了重量,相当于这个物品就是无限的
//因为是取不光的。那么就用完全背包去套
else
{
int k = 1;
//取得光的话,去遍历每种取法
//这里用到是二进制思想,降低了复杂度
//为什么呢,因为他取的1,2,4,8...与余数个该物品,打包成一个大型的该物品
//这样足够凑出了从0-k个该物品取法
//把复杂度从k变成了logk
//如k=11,则有1,2,4,4,足够凑出0-11个该物品的取法
while(k < num[i])
{
ZeroOne_Pack(k*c[i],k*w[i],m);
num[i] -= k;
k <<= 1;
}
ZeroOne_Pack(num[i]*c[i],num[i]*w[i],m);
}
}
return dp[m];
} int main()
{
int t;
cin>>t;
while(t--)
{
cin>>m>>n;
for(int i=1; i<=n; i++)
cin>>c[i]>>w[i]>>num[i];
cout<<Multi_Pack(c,w,num,n,m)<<endl;
}
return 0;
}

本文转自http://blog.csdn.net/tinyguyyy/article/details/51203935

【dp】背包问题的更多相关文章

  1. POJ 1417 True Liars(种类并查集+dp背包问题)

    题目大意: 一共有p1+p2个人,分成两组,一组p1,一组p2.给出N个条件,格式如下: x y yes表示x和y分到同一组,即同是好人或者同是坏人. x y no表示x和y分到不同组,一个为好人,一 ...

  2. HDU 1561 树形DP背包问题

    这是自己第一道背包上树形结构问题,不是很理解这个概念的可以先看看背包九讲 自己第一次做,看了一下别人的思路,结合着对简单背包问题的求解方式自己一次AC了还是有点小激动的 题目大意是: 攻克m个城市,每 ...

  3. DP背包问题小总结

    DP的背包问题可谓是最基础的DP了,分为01背包,完全背包,多重背包 01背包 装与不装是一个问题 01背包基本模型,背包的总体积为v,总共有n件物体,每件物品的体积为v[i],价值为w[i],每件物 ...

  4. DP背包问题学习笔记及系列练习题

    01 背包: 01背包:在M件物品中取出若干件物品放到背包中,每件物品对应的体积v1,v2,v3,....对应的价值为w1,w2,w3,,,,,每件物品最多拿一件. 和很多DP题一样,对于每一个物品, ...

  5. HDU 3127 WHUgirls dp背包问题

    WHUgirls Time Limit: 3000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) Total ...

  6. 记忆搜索与动态规划——DP背包问题

    题目描述 01背包问题 有n个重量和价值分别为\(w_i,v_i\)的物品.从这些物品中挑选出总重量不超过W的物品,求所有挑选方案中价值中总和的最大值. 限制条件 1 <= n <= 10 ...

  7. dp背包问题

    0-1背包 1.问题定义: 给定n种物品和背包.物品i的重量是wi,价值是vi,每种物品只有一个,背包容量为C.问:应该如何选择装入背包的物品,使得装入背包中的物品总值最大. 2.算法思路: 选择装入 ...

  8. [poj 1947]树dp+背包问题

    题目链接:http://poj.org/problem?id=1947 看了很多题解都是直接一遍dfs就搞定的方法,但是我实在是没看懂那个转移方程.最后在茫茫博客中终于发现了一个有逻辑的方法,但是复杂 ...

  9. URAL 1108 简单的树形dp背包问题

    题目大意: 一颗苹果树上,每条边都对应了一个权值,最后留下包括root : 1在的含有 m 条边的子树 , 希望留下的子树中权值之和最大 这里保留m条边,我们可以看作是保留了 m + 1 个点 令dp ...

  10. 动态规划(DP)基础

    DP基础 简单dp 背包问题 记忆化搜索 简单dp 数字三角形 给一个数字构成的三角形,求从顶端走到底部的一条路径,使得路径上的和最大(或者最小). 1 2 3 6 5 4 Example_1 7 3 ...

随机推荐

  1. C#中的partial关键字

    这节讲一下partial(局部的,部分的)关键字,初学者可能没有接触过这个关键字,但是只要你写过winform或者WPF应用程序的话,那你肯定被动用过这个关键字.首先介绍一下这个关键字的作用,它用作定 ...

  2. Consul 服务的注册和发现

    Consul 是Hashicorp公司推出的开源工具,用于实现分布式系统的服务发现与配置.Consul是分布式的,高可用的,可横向扩展的. Consul 的主要特点有:    Service Disc ...

  3. 为什么说Zoho CRM是最好的销售预测系统?

    在文章的开头,我们来讲讲什么是销售预测--销售预测是指利用销售管道中的商机.已完成的配额.有望完成目标的销售团队或个人等关键信息对产品的销售数量与销售金额进行预测的手段.企业在制定销售计划时的重要任务 ...

  4. 用JIRA管理你的项目——(一)JIRA环境搭建

    JIRA,大家应该都已经不陌生了! 最初接触这个工具的时候,我还在一味地单纯依靠SVN管理代码,幻想着SVN可以有个邮件通知,至少在项目成员进行代码修改的时候,我可以第一时间通过邮件获得这个消息! 当 ...

  5. SSH连接自动断开的解决方法(deb/rpm)

    ######### 修改后的: ## # tail -f -n 20 sshd_config#MaxStartups 10:30:60#Banner /etc/issue.net # Allow cl ...

  6. 四大浏览器JavaScript性能/硬件加速测试

    四大浏览器JavaScript性能/硬件加速测试 出处:快科技 2010-09-19 10:52:59    人气: 27925 次   作者:萧萧 编辑:萧萧[爆料]  评论(42)  收藏文章 新 ...

  7. 【ArcGIS遇上Python】ArcGIS Python批处理入门到精通实用教程目录

    目录 1. 专栏简介 2. 专栏地址 3. 专栏目录 1. 专栏简介 Python语言是目前很火热的语言,极大的促进了人工智能发展.你知道在ArcGIS中也会有python的身影吗?事实上,在ArcG ...

  8. kotlin中的嵌套类与内部类

    Java中的内部类和静态内部类在Java中内部类简言之就是在一个类的内部定义的另一个类.当然在如果这个内部类被static修饰符修饰,那就是一个静态内部类.关于内部类 和静态内部类除了修饰符的区别之外 ...

  9. 在微信框架模块中,基于Vue&Element前端的微信公众号和企业微信的用户绑定

    在一个和微信相关的业务管理系统,我们有时候需要和用户的微信账号信息进行绑定,如对公众号.企业微信等账号绑定特定的系统用户,可以进行扫码登录.微信信息发送等操作,用户的绑定主要就是记录公众号用户的ope ...

  10. 论鸿蒙OS在某些人眼中的样子

    对于鸿蒙OS,博客园有一篇文章<为鸿蒙OS说两句公道话(我对鸿蒙OS的一些看法)>.有兴趣的可以看看. 在这篇文章中,个人觉得最精彩的不是文章本身,而是评论内容. 下面我挑一些出来,和大家 ...