BZOJ 4421: [Cerc2015] Digit Division 排列组合
4421: [Cerc2015] Digit Division
题目连接:
http://www.lydsy.com/JudgeOnline/problem.php?id=4421
Description
给出一个数字串,现将其分成一个或多个子串,要求分出来的每个子串能Mod M等于0.
将方案数(mod 10^9+7)
Input
给出N,M,其中1<=N<=300 000,1<=M<=1000 000.
接下来一行,一个数字串,长度为N。
Output
如题
Sample Input
4 2
1246
Sample Output
4
Hint
题意
题解:
权限题
找到能够mod m=0的前缀。
首先,如果整个串不能modm为0的话,那么答案为0.
否则我任意选择前缀的组合+整个串的组合都可以,因为任意两个前缀都可以切成两块来。
然后答案就是C(n-1,0)+C(n-1,1)+....+C(n-1,n-1)=2^(n-1),n是满足要求的前缀的个数
代码
#include<bits/stdc++.h>
using namespace std;
const int mod = 1e9+7;
const int maxn = 3e5+6;
int n,m,la,ans,len;
char s[maxn];
int main()
{
scanf("%d%d",&n,&m);
scanf("%s",s+1);len=strlen(s+1);
for(int i=1;i<=len;i++)
{
la=(la*10+(int)(s[i]-'0'))%m;
if(la==0)if(ans==0)ans=1;else ans=ans*2%mod;
}
if(la!=0)printf("0\n");else printf("%d\n",ans);
}
BZOJ 4421: [Cerc2015] Digit Division 排列组合的更多相关文章
- BZOJ 4421: [Cerc2015] Digit Division
4421: [Cerc2015] Digit Division Time Limit: 1 Sec Memory Limit: 512 MBSubmit: 348 Solved: 202[Subm ...
- BZOJ 4421: [Cerc2015] Digit Division(思路)
传送门 解题思路 差点写树套树...可以发现如果几个数都能被\(m\)整除,那么这几个数拼起来也能被\(m\)整除.同理,如果一个数不能被\(m\)整除,那么它无论如何拆,都无法拆成若干个可以被\(m ...
- 【BZOJ4421】[Cerc2015] Digit Division 动态规划
[BZOJ4421][Cerc2015] Digit Division Description 给出一个数字串,现将其分成一个或多个子串,要求分出来的每个子串能Mod M等于0. 将方案数(mod 1 ...
- BZOJ4421 : [Cerc2015] Digit Division
如果两个相邻的串可行,那么它们合并后一定可行,所以求出所有可行的串的个数$t$,则$ans=2^{t-1}$. 注意特判整个串不可行的情况,这个时候答案为0. #include<cstdio&g ...
- BZOJ 1008 [HNOI2008]越狱 (简单排列组合 + 快速幂)
1008: [HNOI2008]越狱 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 10503 Solved: 4558[Submit][Status ...
- bzoj 3505 [Cqoi2014]数三角形——排列组合
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3505 好题!一定要经常回顾! 那个 一条斜线上的点的个数是其两端点横坐标之差和纵坐标之差的g ...
- [CERC2015]Digit Division
题目描述 We are given a sequence of n decimal digits. The sequence needs to be partitioned into one or m ...
- Digit Division(排列组合+思维)(Gym 101480D )
题目链接:Central Europe Regional Contest 2015 Zagreb, November 13-15, 2015 D.Digit Division(排列组合+思维) 题解: ...
- 【BZOJ】2111: [ZJOI2010]Perm 排列计数 计数DP+排列组合+lucas
[题目]BZOJ 2111 [题意]求有多少1~n的排列,满足\(A_i>A_{\frac{i}{2}}\),输出对p取模的结果.\(n \leq 10^6,p \leq 10^9\),p是素数 ...
随机推荐
- JVM常用启动参数+常用内存调试工具
一.JVM常用启动参数 -Xms:设置堆的最小值. -Xmx:设置堆的最大值. -Xmn:设置新生代的大小. -Xss:设置每个线程的栈大小. -XX:NewSize:设置新生代的初始值. -XX:M ...
- 【写在NOIP前】
快NOIP了,感觉自己得总结一下吧. 1.要自信啊,相信自己啊,我明明还是有些实力的是吧. 哪怕之前被教练怎么怼,自己别放弃啊 一定要注意心态吧,考试的时候怎么都不能慌,你不会的题也不会有多少人会做的 ...
- mybatis 控制台打印sql脚本
在mybatis-config.xml文件中加一句 <setting name="logImpl" value="STDOUT_LOGGING" /> ...
- Shell编程学习2--命令大全
Linux中有很多的命令,这些命令可分分为10类(具体参见[1]): 1) 文件管理; 2) 文档编辑; 3) 文件传输; 4) 磁盘管理; 5) 磁盘维护; 6) 网络通讯; 7) 系统管理; 8) ...
- FM的推导原理--推荐系统
FM:解决稀疏数据下的特征组合问题 Factorization Machine(因子分解机) 美团技术团队的文章,觉得写得很好啊:https://tech.meituan.com/deep-unde ...
- NOIP2015 D2T3 运输计划
拿到题目的第一眼 首先这是一棵n个节点的树(别说你看不出来) 然后对于树上的m条链我们可以选取树上的唯一一条边使它的边权变为0 求处理后最长链的长度 20分 m=1好啦,好像可做一眼望去全是水 只需求 ...
- Spring cloud Feign 调用端不生效
如果提供方的接口经过测试是没问题的话. 消费方启动类加上@EnableFeignClients 注意定义的接口如果不和启动类在同一个包路径下,需要加basePackages 即:@EnableFeig ...
- linux nc命令使用详解(转)
linux nc命令使用详解 功能说明:功能强大的网络工具 语 法:nc [-hlnruz][-g<网关...>][-G<指向器数目>][-i<延迟秒数>][-o& ...
- **PHP错误Cannot use object of type stdClass as array in错误的
错误:将PHP对象类型当做了PHP数组 解决方法:用对象操作符-> 今天在PHP输出一个二维数组的时候,出现了“Fatal error: Cannot use object of type s ...
- hdu 5078(2014鞍山现场赛 I题)
数据 表示每次到达某个位置的坐标和时间 计算出每对相邻点之间转移的速度(两点间距离距离/相隔时间) 输出最大值 Sample Input252 1 9//t x y3 7 25 9 06 6 37 6 ...