P3164 [CQOI2014]和谐矩阵


乱写能AC,暴力踩标程(雾

第一眼

诶这题能暴力枚举2333!!!

第二眼

诶这题能高斯消元!那只需要把每个位置的数给设出来就能够列方程了!然后就可以\(O(1600^3)\)跑了!

第三眼

只需要对每一行每一列有奇数还是偶数个1列方程就行了!

然而我太菜了想不到这种方法

第三眼

这个方程好像系数都是0而且结果都是1!那么消的时候只需要下面方程减上面方程就行了!而且这是个模2意义下的方程!

emmm所以不需要减只需要异或?

所以可以用bitset存系数???

然后异或一下???

就可以\(O(1600^3/32)\)辗标算?

第四眼

诶好像可以卡常!显然1的数量很小,所以可以用bitset自带的findfirst和findnext可以寻找1的位置再减。。。

然后code出来就不开O2 8ms,开O2 0ms了

// It is made by XZZ
#include<cstdio>
#include<algorithm>
#include<bitset>
#define il inline
#define rg register
#define vd void
#define sta static
typedef long long ll;
il int gi(){
rg int x=0,f=1;rg char ch=getchar();
while(ch<'0'||ch>'9')f=ch=='-'?-1:f,ch=getchar();
while(ch>='0'&&ch<='9')x=x*10+ch-'0',ch=getchar();
return x*f;
}
using namespace std;
bitset<1601>S[1601];
int p[1601];
int id[41][41];
int ans[1601];
int main(){
#ifdef xzz
freopen("3164.in","r",stdin);
freopen("3163.out","w",stdout);
#endif
int n=gi(),m=gi(),N=n*m;
for(rg int i=1;i<=n;++i)
for(rg int j=1;j<=m;++j)
id[i][j]=++id[0][0];
for(rg int i=1;i<=n;++i)
for(rg int j=1;j<=m;++j)
S[id[i][j]][id[i][j]]=1;
for(rg int i=1;i<=n;++i)
for(rg int j=1;j<m;++j)
S[id[i][j]][id[i][j+1]]=1;
for(rg int i=1;i<=n;++i)
for(rg int j=2;j<=m;++j)
S[id[i][j]][id[i][j-1]]=1;
for(rg int i=1;i<n;++i)
for(rg int j=1;j<=m;++j)
S[id[i][j]][id[i+1][j]]=1;
for(rg int i=2;i<=n;++i)
for(rg int j=1;j<=m;++j)
S[id[i][j]][id[i-1][j]]=1;
for(rg int i=1;i<=N;++i)p[i]=i;
for(rg int i=1;i<=N;++i){
for(rg int j=S[p[i]]._Find_first();j<i;j=S[p[i]]._Find_next(j))
if(S[p[j]][j])S[p[i]]^=S[p[j]];
else swap(p[i],p[j]);
}
for(rg int i=N;i;--i){
if(S[p[i]][i]==0){ans[i]=1;continue;}
for(rg int j=S[p[i]]._Find_next(i);j<=N;j=S[p[i]]._Find_next(j))
ans[i]^=ans[j];
}
for(rg int i=1;i<=n;++i){
for(rg int j=1;j<=m;++j)
printf("%d ",ans[id[i][j]]);
puts("");
}
return 0;
}

P3164 [CQOI2014]和谐矩阵的更多相关文章

  1. P3164 [CQOI2014]和谐矩阵(高斯消元 + bitset)

    题意:构造一个$n*m$矩阵 使得每个元素和上下左右的xor值=0 题解:设第一行的每个元素值为未知数 可以依次得到每一行的值 然后把最后一行由题意条件 得到$m$个方程 高斯消元解一下 bitset ...

  2. 洛谷P3164 [CQOI2014]和谐矩阵

    高斯消元,可以直接消的 #include<cstdio> #include<cstdlib> #include<algorithm> #include<cst ...

  3. BZOJ 3503: [Cqoi2014]和谐矩阵( 高斯消元 )

    偶数个相邻, 以n*m个点为变量, 建立异或方程组然后高斯消元... O((n*m)^3)复杂度看起来好像有点大...但是压一下位的话就是O((n*m)^3 / 64), 常数小, 实际也跑得很快. ...

  4. 【高斯消元】BZOJ3503 [Cqoi2014]和谐矩阵

    3503: [Cqoi2014]和谐矩阵 Time Limit: 10 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 1197  Solved: ...

  5. BZOJ_3503_[Cqoi2014]和谐矩阵_高斯消元

    BZOJ_3503_[Cqoi2014]和谐矩阵_高斯消元 题意: 我们称一个由0和1组成的矩阵是和谐的,当且仅当每个元素都有偶数个相邻的1.一个元素相邻的元素包括它本身,及他上下左右的4个元素(如果 ...

  6. bzoj千题计划105:bzoj3503: [Cqoi2014]和谐矩阵(高斯消元法解异或方程组)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3503 b[i][j] 表示i对j是否有影响 高斯消元解异或方程组 bitset优化 #include ...

  7. 3503: [Cqoi2014]和谐矩阵

    3503: [Cqoi2014]和谐矩阵 链接 分析: 对于每个点,可以列出一个方程a[i][j]=a[i][j-1]^a[i][j+1]^a[i-1][j]^a[i+1][j],于是可以列出n*m个 ...

  8. BZOJ3503:[CQOI2014]和谐矩阵(高斯消元,bitset)

    Description 我们称一个由0和1组成的矩阵是和谐的,当且仅当每个元素都有偶数个相邻的1.一个元素相邻的元素包括它本 身,及他上下左右的4个元素(如果存在). 给定矩阵的行数和列数,请计算并输 ...

  9. Luogu3164 CQOI2014 和谐矩阵 异或高斯消元

    传送门 题意:给出$N,M$,试构造一个$N \times M$的非全$0$矩阵,其中所有格子都满足:它和它上下左右四个格子的权值之和为偶数.$N , M \leq 40$ 可以依据题目中的条件列出有 ...

随机推荐

  1. 在 vSphere 5.x/6.0 中配置 Network Dump Collector 服务 (2002954)

    vmware KB: https://kb.vmware.com/s/article/2002954?lang=zh_CN 重点配置命令: 使用 vSphere Client 连接到 vCenter ...

  2. springmvc常用的组件,注解,跳转

    路径映射 XXXHandlerMapping 随开发配置越来越多 注解到java代码中来简化xml配置 请求到哪个Controller 控制器bean Controller 随着开发配置越来越多 注解 ...

  3. 数据库服务注册(使用命令注册):解决my.ini配置文件不存在的问题

    注册数据库的时候,有一键式安装,还有一种通过压缩包安装.今天主要来讲一下压缩包安装会出现的问题. 1. 新建一个my.ini文件,里面内容为: [client] port=3306 default-c ...

  4. win10不错的快捷键

      A I S number 左右 上下 , Win键 Open Action center. Open Settings. Open Search. Open the app pinned to t ...

  5. Mysql数据库字符集问题

    修改mysql数据库的默认编码方式 修改my.ini文件 加上 default-character-set=gb2312 设定数据库字符集 alter database da_name default ...

  6. 利用xlst导出多表头的简便方法

    大家都知道在ASP.NET中进行表格导出有很多种办法,aspose,npoi,cvs等等,今天就来介绍xlst,导出多表头.与以往不一样的是我们利用模板,只需要在模板中定义好表格样式,然后绑定数据就可 ...

  7. css-table属性运用

    最近在工作中遇到了一些不常用的布局,很多使用 CSS table 属性,并结合 ::before,::after 伪元素完成了,使得 HTML 的结构相对更简单,更具有语义性.当 HTML 结构越清晰 ...

  8. 记一次爬虫经历(友话APP的Web端)

    背景:学校为迎接新生举办了一个活动,在友话APP的校园圈子内发布动态即可参与活动,最终抽取数名同学赠送福利. 分析:动态的数量会随着迎新的开始逐渐增加,人工统计显然不现实,因此可以使用爬虫脚本在友话A ...

  9. linq to sql 中增删改查

    首先我先说一下,如果真的要用linq做项目的话,也会是比较方便的.已经尝试了在三层架构中应用linq to sql 比较方便. //有三个不同的数据库表,所以写法不一样 public class Li ...

  10. ethereumjs/ethereumjs-common-3-test

    查看test能够让你更好滴了解其API文档的使用 ethereumjs-common/tests/chains.js const tape = require('tape') const Common ...