P3164 [CQOI2014]和谐矩阵
P3164 [CQOI2014]和谐矩阵
乱写能AC,暴力踩标程(雾
第一眼
诶这题能暴力枚举2333!!!
第二眼
诶这题能高斯消元!那只需要把每个位置的数给设出来就能够列方程了!然后就可以\(O(1600^3)\)跑了!
第三眼
只需要对每一行每一列有奇数还是偶数个1列方程就行了!
然而我太菜了想不到这种方法
第三眼
这个方程好像系数都是0而且结果都是1!那么消的时候只需要下面方程减上面方程就行了!而且这是个模2意义下的方程!
emmm所以不需要减只需要异或?
所以可以用bitset存系数???
然后异或一下???
就可以\(O(1600^3/32)\)辗标算?
第四眼
诶好像可以卡常!显然1的数量很小,所以可以用bitset自带的findfirst和findnext可以寻找1的位置再减。。。
然后code出来就不开O2 8ms,开O2 0ms了
// It is made by XZZ
#include<cstdio>
#include<algorithm>
#include<bitset>
#define il inline
#define rg register
#define vd void
#define sta static
typedef long long ll;
il int gi(){
rg int x=0,f=1;rg char ch=getchar();
while(ch<'0'||ch>'9')f=ch=='-'?-1:f,ch=getchar();
while(ch>='0'&&ch<='9')x=x*10+ch-'0',ch=getchar();
return x*f;
}
using namespace std;
bitset<1601>S[1601];
int p[1601];
int id[41][41];
int ans[1601];
int main(){
#ifdef xzz
freopen("3164.in","r",stdin);
freopen("3163.out","w",stdout);
#endif
int n=gi(),m=gi(),N=n*m;
for(rg int i=1;i<=n;++i)
for(rg int j=1;j<=m;++j)
id[i][j]=++id[0][0];
for(rg int i=1;i<=n;++i)
for(rg int j=1;j<=m;++j)
S[id[i][j]][id[i][j]]=1;
for(rg int i=1;i<=n;++i)
for(rg int j=1;j<m;++j)
S[id[i][j]][id[i][j+1]]=1;
for(rg int i=1;i<=n;++i)
for(rg int j=2;j<=m;++j)
S[id[i][j]][id[i][j-1]]=1;
for(rg int i=1;i<n;++i)
for(rg int j=1;j<=m;++j)
S[id[i][j]][id[i+1][j]]=1;
for(rg int i=2;i<=n;++i)
for(rg int j=1;j<=m;++j)
S[id[i][j]][id[i-1][j]]=1;
for(rg int i=1;i<=N;++i)p[i]=i;
for(rg int i=1;i<=N;++i){
for(rg int j=S[p[i]]._Find_first();j<i;j=S[p[i]]._Find_next(j))
if(S[p[j]][j])S[p[i]]^=S[p[j]];
else swap(p[i],p[j]);
}
for(rg int i=N;i;--i){
if(S[p[i]][i]==0){ans[i]=1;continue;}
for(rg int j=S[p[i]]._Find_next(i);j<=N;j=S[p[i]]._Find_next(j))
ans[i]^=ans[j];
}
for(rg int i=1;i<=n;++i){
for(rg int j=1;j<=m;++j)
printf("%d ",ans[id[i][j]]);
puts("");
}
return 0;
}
P3164 [CQOI2014]和谐矩阵的更多相关文章
- P3164 [CQOI2014]和谐矩阵(高斯消元 + bitset)
题意:构造一个$n*m$矩阵 使得每个元素和上下左右的xor值=0 题解:设第一行的每个元素值为未知数 可以依次得到每一行的值 然后把最后一行由题意条件 得到$m$个方程 高斯消元解一下 bitset ...
- 洛谷P3164 [CQOI2014]和谐矩阵
高斯消元,可以直接消的 #include<cstdio> #include<cstdlib> #include<algorithm> #include<cst ...
- BZOJ 3503: [Cqoi2014]和谐矩阵( 高斯消元 )
偶数个相邻, 以n*m个点为变量, 建立异或方程组然后高斯消元... O((n*m)^3)复杂度看起来好像有点大...但是压一下位的话就是O((n*m)^3 / 64), 常数小, 实际也跑得很快. ...
- 【高斯消元】BZOJ3503 [Cqoi2014]和谐矩阵
3503: [Cqoi2014]和谐矩阵 Time Limit: 10 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 1197 Solved: ...
- BZOJ_3503_[Cqoi2014]和谐矩阵_高斯消元
BZOJ_3503_[Cqoi2014]和谐矩阵_高斯消元 题意: 我们称一个由0和1组成的矩阵是和谐的,当且仅当每个元素都有偶数个相邻的1.一个元素相邻的元素包括它本身,及他上下左右的4个元素(如果 ...
- bzoj千题计划105:bzoj3503: [Cqoi2014]和谐矩阵(高斯消元法解异或方程组)
http://www.lydsy.com/JudgeOnline/problem.php?id=3503 b[i][j] 表示i对j是否有影响 高斯消元解异或方程组 bitset优化 #include ...
- 3503: [Cqoi2014]和谐矩阵
3503: [Cqoi2014]和谐矩阵 链接 分析: 对于每个点,可以列出一个方程a[i][j]=a[i][j-1]^a[i][j+1]^a[i-1][j]^a[i+1][j],于是可以列出n*m个 ...
- BZOJ3503:[CQOI2014]和谐矩阵(高斯消元,bitset)
Description 我们称一个由0和1组成的矩阵是和谐的,当且仅当每个元素都有偶数个相邻的1.一个元素相邻的元素包括它本 身,及他上下左右的4个元素(如果存在). 给定矩阵的行数和列数,请计算并输 ...
- Luogu3164 CQOI2014 和谐矩阵 异或高斯消元
传送门 题意:给出$N,M$,试构造一个$N \times M$的非全$0$矩阵,其中所有格子都满足:它和它上下左右四个格子的权值之和为偶数.$N , M \leq 40$ 可以依据题目中的条件列出有 ...
随机推荐
- MySQL Bug导致异常宕机的分析流程
原文链接:http://click.aliyun.com/m/42521/ 摘要: 本文主要通过一个bug来记录一下如何分析一个MySQL bug的崩溃信息. 版本:Percona 5.7.17-11 ...
- 转:asp.net 中的viewstate
概述 ViewState是一个被误解很深的动物了.我希望通过此文章来澄清人们对ViewState的一些错误认识.为了达到这个目的,我决定从头到尾详细的描述一下整个ViewState的工作机制,其中我会 ...
- 转: c#.net利用RNGCryptoServiceProvider产生任意范围强随机数的办法
//这样产生0 ~ 100的强随机数(含100) ; int rnd = int.MinValue; decimal _base = (decimal)long.MaxValue; ]; System ...
- nginx安装脚本
#!/bin/bash#auto config Nginx#by zhangjia 2019#define Path variables#date:2019/1/16 check_ok() { ]] ...
- .Linode服务器的使用 网站迁移
很多建站的朋友习惯了虚拟主机的 Cpanel 面板,但是面对 VPS 都感觉无所适从.毕竟外贸人很少接触到这类知识,所以需要一个贴心的新手教程. Linode VPS:国外最好的VPS注册购买教程 撇 ...
- javascript excel
js做的 excel , http://handsontable.com/ js keyCode对照表 http://dwz.cn/Lknbz
- 12-5 张雨RTCM3数据解码解不出的原因
数据大小:75kB 时间12-4 原因:二进制数据乱码,未通过电文头检验 2018-12-10 08:44:05 张雨RTCM32-MSM4无法固定,连差分都没有
- 实现body背景拉伸自适应 兼容chrome ie7,8,9.ie6未测试
html, body {/*此部分支持chrome,应该也支持firefox*/ background: rgb(246,248,249); background: url('/styles/imag ...
- Geeks : Kruskal’s Minimum Spanning Tree Algorithm 最小生成树
版权声明:本文作者靖心,靖空间地址:http://blog.csdn.net/kenden23/.未经本作者同意不得转载. https://blog.csdn.net/kenden23/article ...
- tomcat服务器宕机解决方案
报错信息: java.lang.Object.wait(Native Method) java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:1 ...