1729 is the natural number following 1728 and preceding 1730. It is also known as the Hardy-Ramanujan number after a famous anecdote of the British mathematician G. H. Hardy regarding
a hospital visit to the Indian mathematician Srinivasa Ramanujan. In Hardy's words:

I remember once going to see him when he was ill at Putney. I had ridden in taxi cab number 1729 and remarked that the number seemed to me rather a dull one, and that I hoped it was not an unfavorable omen. "No," he replied, "it is a very interesting
number; it is the smallest number expressible as the sum of two (positive) cubes in two different ways."

The two different ways are these: 1729 = 13 + 123 = 93 + 103

Now your task is to count how many ways a positive number can be expressible as the sum of two positive cubes in. All the numbers in this task can be expressible as the sum of two positive cubes in at least one way.

Input

There're nearly 20,000 cases. Each case is a positive integer in a single line. And all these numbers are greater than 1 and less than 264.

Output

Please refer to the sample output. For each case, you should output a line. First the number of ways n. Then followed by n pairs of integer, (ai,bi),
indicating a way the given number can be expressible as the sum of ai's cube and bi's. (ai≤ bi, and a1a2<
...< an)

Sample Input

9
4104
2622104000
21131226514944
48988659276962496

Sample Output

1 (1,2)
2 (2,16) (9,15)
3 (600,1340) (678,1322) (1020,1160)
4 (1539,27645) (8664,27360) (11772,26916) (17176,25232)
5 (38787,365757) (107839,362753) (205292,342952) (221424,336588) (231518,331954)

Hint

Although most numbers cannot be expressible as the sum of two positive cubes, the vast majority of numbers in this task can be expressible as the sum of two positive cubes in two or more ways.

题意比較简单,就不解释了

这题还真是弄了好久,再加上犯的各种小错误,可是最终算是搞出来了,不easy啊。。。

思路:要求满足的m=a3+b3=(a+b)(a2-ab+b2)的(a,b)组合。

令t=a+b,则t一定是m的约数,所以应枚举m的全部约数。

然后能够得到

a+b=t

ab=(t2-m/t)/3=p

继而转化为a2-ta+p=0是否有正整数解就能够了。

再就是注意范围要用unsigned long long。

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <algorithm>
using namespace std;
#define ll unsigned long long
#define maxn 2642246//2^64次方的开立方
#define L 5000001
ll n;
ll prime[L],divi[500],e[500];
int len,len_prime,len_s;
bool flag[L] = {false};
struct node
{
ll x,y;
} s[1005]; int cmp(node x,node y)
{
return x.x<y.x;
} void init()//素数且不说,全部合数都能分解成随意素数之积
{
int i,j;
len_prime = 0;
for(i = 2; i<L; i++)
{
if(!flag[i]) prime[len_prime++] = i;//打下素数表
for(int j = 0; j<len_prime && i*prime[j]<L; j++)
{
flag[i*prime[j]] = true;//全部非素数排除
if(i%prime[j]==0) break;
}
}
} void find_div(ll m)//找出m的全部素因子
{
int i;
ll k;
len = 0;
for(i = 0; i<len_prime && prime[i]*prime[i]<=m; i++)
{
if(m%prime[i] == 0)
{
divi[len] = prime[i];//因子保存
k = 1;
m/=prime[i];
while(m%prime[i] == 0)//除尽为止
{
k++;//记录个数
m/=prime[i];
}
e[len++] = k;
}
}
if(m>1)
{
divi[len] = m;
e[len++] = 1;
}
} ll can_sqrt(ll c)//要求整数解,b^2-4*a*c必须能开出整数
{
ll r = sqrt(1.0*c);
if(r*r == c) return r;
return L;
} int judge(ll x,ll y)//看这组解是否已经存在
{
for(int i=0; i<len_s; i++)
if(s[i].x==x&&s[i].y==y)
return 1;
return 0;
} void solve(ll t)//找出解
{
ll x1,x2;
ll k = n/t;
ll r = t*t-k;
if(r>0 && r%3!=0) return ;
r/=3;
ll dis = t*t-4*r;
if(dis<0) return ;
ll c = can_sqrt(dis);
if(c == L) return;
if((t+c)%2 == 0)
{
x1 = (t+c)/2;
x2 = t-x1;
if(x1>x2) swap(x1,x2);
if(x1>0&&x1<t&&x1<maxn&&x2<maxn&&x2>0&&x2<t&&!judge(x1,x2))
{
s[len_s].x=x1;
s[len_s++].y=x2;
}
}
if((t-c)>0 && (t-c)%2 == 0)
{
x1 = (t-c)/2;
x2 = t-x1;
if(x1>x2) swap(x1,x2);
if(x1>0&&x1<t&&x1<maxn&&x2<maxn&&x2>0&&x2<t&&!judge(x1,x2))
{
s[len_s].x=x1;
s[len_s++].y=x2;
}
}
} ll ppow(ll a,ll b)
{
ll ans = 1;
while(b)
{
if(b&1) ans*=a;
b>>=1;
a*=a;
}
return ans;
} void dfs(int m,ll sum)
{
solve(sum);
if(m>=len) return ;
for(int i = 0; i<=e[m]; i++)//由个数去枚举次方,1为a,2为a^2,3为a^3,如此类推,枚举全部t
dfs(m+1,sum*ppow(divi[m],i));
} int main()
{
init();
while(~scanf("%llu",&n))
{
find_div(n);
len_s = 0;
dfs(0,1);
sort(s,s+len_s,cmp);
printf("%d",len_s);
for(int i = 0; i<len_s; i++)
printf(" (%llu,%llu)",s[i].x,s[i].y);
printf("\n");
} return 0;
}

ZOJ3673:1729的更多相关文章

  1. [BZOJ3223]Tyvj 1729 文艺平衡树

    [BZOJ3223]Tyvj 1729 文艺平衡树 试题描述 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作:翻转一个区间,例如原有序序列是5 4 3 2 1,翻转区 ...

  2. BZOJ3223: Tyvj 1729 文艺平衡树 [splay]

    3223: Tyvj 1729 文艺平衡树 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3595  Solved: 2029[Submit][Sta ...

  3. BZOJ 3223: Tyvj 1729 文艺平衡树

    3223: Tyvj 1729 文艺平衡树 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3628  Solved: 2052[Submit][Sta ...

  4. zoj 3673 1729

    1729 Time Limit: 3 Seconds      Memory Limit: 65536 KB 1729 is the natural number following 1728 and ...

  5. bzoj 3223/tyvj 1729 文艺平衡树 splay tree

    原题链接:http://www.tyvj.cn/p/1729 这道题以前用c语言写的splay tree水过了.. 现在接触了c++重写一遍... 只涉及区间翻转,由于没有删除操作故不带垃圾回收,具体 ...

  6. hdoj 1729 Stone Games(SG函数)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1729 看了题目感觉像Nim,但是有范围限制,有点不知道SG函数该怎么写 看了题解,最后才明白该怎么去理 ...

  7. bzoj3223 Tyvj 1729 文艺平衡树(Splay Tree+区间翻转)

    3223: Tyvj 1729 文艺平衡树 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2202  Solved: 1226[Submit][Sta ...

  8. BZOJ 3223: Tyvj 1729 文艺平衡树(splay)

    速度居然进前十了...第八... splay, 区间翻转,用一个类似线段树的lazy标记表示是否翻转 ------------------------------------------------- ...

  9. 3223: Tyvj 1729 文艺平衡树

    3223: Tyvj 1729 文艺平衡树 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1347  Solved: 724[Submit][Stat ...

随机推荐

  1. 洛谷P1841重要的城市

    传送门啦 重要城市有三个性质如下: 1.重要城市能对其他两个不同城市的最短路径做出贡献 2.重要城市具有唯一性,如果两不同城市之间的最短路径有两种中间城市情况,那么这两个中间城市可以彼此代替,就都不能 ...

  2. CSS3小黄人

    CSS3实现小黄人 效果图: 代码如下,复制即可使用: <!DOCTYPE HTML> <HTML> <head> <title>CSS3实现小黄人&l ...

  3. 详解MySQL大表优化方案

    单表优化 除非单表数据未来会一直不断上涨,否则不要一开始就考虑拆分,拆分会带来逻辑.部署.运维的各种复杂度,一般以整型值为主的表在千万级以下,字符串为主的表在五百万以下是没有太大问题的.而事实上很多时 ...

  4. Java字符串拼接效率对比

    1.来自:http://blog.csdn.net/Zen99T/article/details/51255418 2.来自:http://blog.csdn.net/kimsoft/article/ ...

  5. DDD领域模型企业级系统(二)

    用户层: 1.请求应用层获取用户显示的信息 2.发送命令给应用层要求执行某个命令 应用层: 对用户界面提供各种应用功能(包括信息获取与命令执行),应用层不包含业务逻辑,业务层是由应用层调用领域层(领域 ...

  6. ES按资源类型统计个数

    一.目标:统计各类型资源的个数,输出详细报表 http://10.10.6.225:9200/dsideal_db/t_resource_info/ _mapping {  "propert ...

  7. Spark-Streaming总结

    文章出处:http://www.cnblogs.com/haozhengfei/p/e353daff460b01a5be13688fe1f8c952.html Spark_总结五 1.Storm 和 ...

  8. MFC+WinPcap编写一个嗅探器之一(准备)

    知识准备: MFC:http://www.jizhuomi.com/software/257.html WinPcap:http://www.ferrisxu.com/WinPcap/html/ind ...

  9. 【AtCoder】AGC023 A-F题解

    可以说是第一场AGC了,做了三道题之后还有30min,杠了一下D题发现杠不出来,三题滚粗了 rating起步1300+,感觉还是很菜... 只有三题水平显然以后还会疯狂--啊(CF的惨痛经历) 改题的 ...

  10. 使用Caffe训练适合自己样本集的AlexNet网络模型,并对其进行分类

    1.在开始之前,先简单回顾一下几个概念. Caffe(Convolution Architecture For Feature Extraction-卷积神经网络框架):是一个清晰,可读性高,快速的深 ...