ZOJ3673:1729
1729 is the natural number following 1728 and preceding 1730. It is also known as the Hardy-Ramanujan number after a famous anecdote of the British mathematician G. H. Hardy regarding
a hospital visit to the Indian mathematician Srinivasa Ramanujan. In Hardy's words:
I remember once going to see him when he was ill at Putney. I had ridden in taxi cab number 1729 and remarked that the number seemed to me rather a dull one, and that I hoped it was not an unfavorable omen. "No," he replied, "it is a very interesting
number; it is the smallest number expressible as the sum of two (positive) cubes in two different ways."
The two different ways are these: 1729 = 13 + 123 = 93 + 103
Now your task is to count how many ways a positive number can be expressible as the sum of two positive cubes in. All the numbers in this task can be expressible as the sum of two positive cubes in at least one way.
Input
There're nearly 20,000 cases. Each case is a positive integer in a single line. And all these numbers are greater than 1 and less than 264.
Output
Please refer to the sample output. For each case, you should output a line. First the number of ways n. Then followed by n pairs of integer, (ai,bi),
indicating a way the given number can be expressible as the sum of ai's cube and bi's. (ai≤ bi, and a1< a2<
...< an)
Sample Input
9
4104
2622104000
21131226514944
48988659276962496
Sample Output
1 (1,2)
2 (2,16) (9,15)
3 (600,1340) (678,1322) (1020,1160)
4 (1539,27645) (8664,27360) (11772,26916) (17176,25232)
5 (38787,365757) (107839,362753) (205292,342952) (221424,336588) (231518,331954)
Hint
Although most numbers cannot be expressible as the sum of two positive cubes, the vast majority of numbers in this task can be expressible as the sum of two positive cubes in two or more ways.
题意比較简单,就不解释了
这题还真是弄了好久,再加上犯的各种小错误,可是最终算是搞出来了,不easy啊。。。
思路:要求满足的m=a3+b3=(a+b)(a2-ab+b2)的(a,b)组合。
令t=a+b,则t一定是m的约数,所以应枚举m的全部约数。
然后能够得到
a+b=t
ab=(t2-m/t)/3=p
继而转化为a2-ta+p=0是否有正整数解就能够了。
再就是注意范围要用unsigned long long。
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <algorithm>
using namespace std;
#define ll unsigned long long
#define maxn 2642246//2^64次方的开立方
#define L 5000001
ll n;
ll prime[L],divi[500],e[500];
int len,len_prime,len_s;
bool flag[L] = {false};
struct node
{
ll x,y;
} s[1005]; int cmp(node x,node y)
{
return x.x<y.x;
} void init()//素数且不说,全部合数都能分解成随意素数之积
{
int i,j;
len_prime = 0;
for(i = 2; i<L; i++)
{
if(!flag[i]) prime[len_prime++] = i;//打下素数表
for(int j = 0; j<len_prime && i*prime[j]<L; j++)
{
flag[i*prime[j]] = true;//全部非素数排除
if(i%prime[j]==0) break;
}
}
} void find_div(ll m)//找出m的全部素因子
{
int i;
ll k;
len = 0;
for(i = 0; i<len_prime && prime[i]*prime[i]<=m; i++)
{
if(m%prime[i] == 0)
{
divi[len] = prime[i];//因子保存
k = 1;
m/=prime[i];
while(m%prime[i] == 0)//除尽为止
{
k++;//记录个数
m/=prime[i];
}
e[len++] = k;
}
}
if(m>1)
{
divi[len] = m;
e[len++] = 1;
}
} ll can_sqrt(ll c)//要求整数解,b^2-4*a*c必须能开出整数
{
ll r = sqrt(1.0*c);
if(r*r == c) return r;
return L;
} int judge(ll x,ll y)//看这组解是否已经存在
{
for(int i=0; i<len_s; i++)
if(s[i].x==x&&s[i].y==y)
return 1;
return 0;
} void solve(ll t)//找出解
{
ll x1,x2;
ll k = n/t;
ll r = t*t-k;
if(r>0 && r%3!=0) return ;
r/=3;
ll dis = t*t-4*r;
if(dis<0) return ;
ll c = can_sqrt(dis);
if(c == L) return;
if((t+c)%2 == 0)
{
x1 = (t+c)/2;
x2 = t-x1;
if(x1>x2) swap(x1,x2);
if(x1>0&&x1<t&&x1<maxn&&x2<maxn&&x2>0&&x2<t&&!judge(x1,x2))
{
s[len_s].x=x1;
s[len_s++].y=x2;
}
}
if((t-c)>0 && (t-c)%2 == 0)
{
x1 = (t-c)/2;
x2 = t-x1;
if(x1>x2) swap(x1,x2);
if(x1>0&&x1<t&&x1<maxn&&x2<maxn&&x2>0&&x2<t&&!judge(x1,x2))
{
s[len_s].x=x1;
s[len_s++].y=x2;
}
}
} ll ppow(ll a,ll b)
{
ll ans = 1;
while(b)
{
if(b&1) ans*=a;
b>>=1;
a*=a;
}
return ans;
} void dfs(int m,ll sum)
{
solve(sum);
if(m>=len) return ;
for(int i = 0; i<=e[m]; i++)//由个数去枚举次方,1为a,2为a^2,3为a^3,如此类推,枚举全部t
dfs(m+1,sum*ppow(divi[m],i));
} int main()
{
init();
while(~scanf("%llu",&n))
{
find_div(n);
len_s = 0;
dfs(0,1);
sort(s,s+len_s,cmp);
printf("%d",len_s);
for(int i = 0; i<len_s; i++)
printf(" (%llu,%llu)",s[i].x,s[i].y);
printf("\n");
} return 0;
}
ZOJ3673:1729的更多相关文章
- [BZOJ3223]Tyvj 1729 文艺平衡树
[BZOJ3223]Tyvj 1729 文艺平衡树 试题描述 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作:翻转一个区间,例如原有序序列是5 4 3 2 1,翻转区 ...
- BZOJ3223: Tyvj 1729 文艺平衡树 [splay]
3223: Tyvj 1729 文艺平衡树 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3595 Solved: 2029[Submit][Sta ...
- BZOJ 3223: Tyvj 1729 文艺平衡树
3223: Tyvj 1729 文艺平衡树 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3628 Solved: 2052[Submit][Sta ...
- zoj 3673 1729
1729 Time Limit: 3 Seconds Memory Limit: 65536 KB 1729 is the natural number following 1728 and ...
- bzoj 3223/tyvj 1729 文艺平衡树 splay tree
原题链接:http://www.tyvj.cn/p/1729 这道题以前用c语言写的splay tree水过了.. 现在接触了c++重写一遍... 只涉及区间翻转,由于没有删除操作故不带垃圾回收,具体 ...
- hdoj 1729 Stone Games(SG函数)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1729 看了题目感觉像Nim,但是有范围限制,有点不知道SG函数该怎么写 看了题解,最后才明白该怎么去理 ...
- bzoj3223 Tyvj 1729 文艺平衡树(Splay Tree+区间翻转)
3223: Tyvj 1729 文艺平衡树 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2202 Solved: 1226[Submit][Sta ...
- BZOJ 3223: Tyvj 1729 文艺平衡树(splay)
速度居然进前十了...第八... splay, 区间翻转,用一个类似线段树的lazy标记表示是否翻转 ------------------------------------------------- ...
- 3223: Tyvj 1729 文艺平衡树
3223: Tyvj 1729 文艺平衡树 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1347 Solved: 724[Submit][Stat ...
随机推荐
- CentOS下编译安装python包管理安装工具pip教程
ubuntu 安装pip 代码如下: apt-get install python-pip 安装requests, pip install requests 对于centos的,直接 yum inst ...
- 一个文件系统过滤驱动的demo
因为没写过FSD过滤驱动,所以拿来练练手,没有什么技术含量.参考自Win内核安全与驱动开发. 先梳理一下大概的流程,就是怎么去绑定设备栈.怎么去过滤各种请求的. 首先肯定是要绑定设备栈的,来看下怎么绑 ...
- 关于ARM指令那些你必须知道的东西
1.32位ARM指令每一位都有其作用,具体如下: 低12为第二操作数, 12~15位为目的寄存器, 16~19位为第一操作数, 20~27就是操作码, 28~31就是条件域. 2.多寄存器load和s ...
- 企业级Docker Registry —— Harbor搭建和使用
本节内容: Harbor介绍 安装部署Harbor 环境要求 环境信息 安装部署harbor 配置harbor 配置存储 完成安装和启动harbor 访问Harbor 修改管理员密码 启动后相关容器 ...
- ORACLE TO_CHAR(SYSDATE,'D')
DDD是该天在一年内的第多少天,d是在一周内第几天,dd是一个月内的 DY :Day of week abbreviated Mon, Tue, Fri DAY :Day of week spelle ...
- linux虚拟机更改时区
第一种方法: cat /etc/sysconfig/clock ZONE="Asia/Shanghai" UTC=true ARC=false rm -f /etc/loca ...
- 如何保证Redis中的数据都是热点数据
redis 内存数据集大小上升到一定大小的时候,就会施行数据淘汰策略.redis 提供 6种数据淘汰策略:volatile-lru:从已设置过期时间的数据集(server.db[i].expires) ...
- 【基础知识】.Net基础加强 第四天
一. 显示实现接口 1. 显示实现接口的目的:为了解决法方法重名的问题. 2. 显示实现接口必须是私有的,不能用public 3. (复习)类中成员不写访问修饰符默认是private:类如果不写访问修 ...
- 【BZOJ 2721】 2721: [Violet 5]樱花 (筛)
2721: [Violet 5]樱花 Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 599 Solved: 354 Description Input ...
- String StringBuffer stringbuilder 区别
韩梦飞沙 韩亚飞 313134555@qq.com yue31313 han_meng_fei_sha 字符串类 ,长度不可变. 字符串缓存器类, 长度可变, 线程安全, 字符串构造器类,长度 ...