1729 is the natural number following 1728 and preceding 1730. It is also known as the Hardy-Ramanujan number after a famous anecdote of the British mathematician G. H. Hardy regarding
a hospital visit to the Indian mathematician Srinivasa Ramanujan. In Hardy's words:

I remember once going to see him when he was ill at Putney. I had ridden in taxi cab number 1729 and remarked that the number seemed to me rather a dull one, and that I hoped it was not an unfavorable omen. "No," he replied, "it is a very interesting
number; it is the smallest number expressible as the sum of two (positive) cubes in two different ways."

The two different ways are these: 1729 = 13 + 123 = 93 + 103

Now your task is to count how many ways a positive number can be expressible as the sum of two positive cubes in. All the numbers in this task can be expressible as the sum of two positive cubes in at least one way.

Input

There're nearly 20,000 cases. Each case is a positive integer in a single line. And all these numbers are greater than 1 and less than 264.

Output

Please refer to the sample output. For each case, you should output a line. First the number of ways n. Then followed by n pairs of integer, (ai,bi),
indicating a way the given number can be expressible as the sum of ai's cube and bi's. (ai≤ bi, and a1a2<
...< an)

Sample Input

9
4104
2622104000
21131226514944
48988659276962496

Sample Output

1 (1,2)
2 (2,16) (9,15)
3 (600,1340) (678,1322) (1020,1160)
4 (1539,27645) (8664,27360) (11772,26916) (17176,25232)
5 (38787,365757) (107839,362753) (205292,342952) (221424,336588) (231518,331954)

Hint

Although most numbers cannot be expressible as the sum of two positive cubes, the vast majority of numbers in this task can be expressible as the sum of two positive cubes in two or more ways.

题意比較简单,就不解释了

这题还真是弄了好久,再加上犯的各种小错误,可是最终算是搞出来了,不easy啊。。。

思路:要求满足的m=a3+b3=(a+b)(a2-ab+b2)的(a,b)组合。

令t=a+b,则t一定是m的约数,所以应枚举m的全部约数。

然后能够得到

a+b=t

ab=(t2-m/t)/3=p

继而转化为a2-ta+p=0是否有正整数解就能够了。

再就是注意范围要用unsigned long long。

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <algorithm>
using namespace std;
#define ll unsigned long long
#define maxn 2642246//2^64次方的开立方
#define L 5000001
ll n;
ll prime[L],divi[500],e[500];
int len,len_prime,len_s;
bool flag[L] = {false};
struct node
{
ll x,y;
} s[1005]; int cmp(node x,node y)
{
return x.x<y.x;
} void init()//素数且不说,全部合数都能分解成随意素数之积
{
int i,j;
len_prime = 0;
for(i = 2; i<L; i++)
{
if(!flag[i]) prime[len_prime++] = i;//打下素数表
for(int j = 0; j<len_prime && i*prime[j]<L; j++)
{
flag[i*prime[j]] = true;//全部非素数排除
if(i%prime[j]==0) break;
}
}
} void find_div(ll m)//找出m的全部素因子
{
int i;
ll k;
len = 0;
for(i = 0; i<len_prime && prime[i]*prime[i]<=m; i++)
{
if(m%prime[i] == 0)
{
divi[len] = prime[i];//因子保存
k = 1;
m/=prime[i];
while(m%prime[i] == 0)//除尽为止
{
k++;//记录个数
m/=prime[i];
}
e[len++] = k;
}
}
if(m>1)
{
divi[len] = m;
e[len++] = 1;
}
} ll can_sqrt(ll c)//要求整数解,b^2-4*a*c必须能开出整数
{
ll r = sqrt(1.0*c);
if(r*r == c) return r;
return L;
} int judge(ll x,ll y)//看这组解是否已经存在
{
for(int i=0; i<len_s; i++)
if(s[i].x==x&&s[i].y==y)
return 1;
return 0;
} void solve(ll t)//找出解
{
ll x1,x2;
ll k = n/t;
ll r = t*t-k;
if(r>0 && r%3!=0) return ;
r/=3;
ll dis = t*t-4*r;
if(dis<0) return ;
ll c = can_sqrt(dis);
if(c == L) return;
if((t+c)%2 == 0)
{
x1 = (t+c)/2;
x2 = t-x1;
if(x1>x2) swap(x1,x2);
if(x1>0&&x1<t&&x1<maxn&&x2<maxn&&x2>0&&x2<t&&!judge(x1,x2))
{
s[len_s].x=x1;
s[len_s++].y=x2;
}
}
if((t-c)>0 && (t-c)%2 == 0)
{
x1 = (t-c)/2;
x2 = t-x1;
if(x1>x2) swap(x1,x2);
if(x1>0&&x1<t&&x1<maxn&&x2<maxn&&x2>0&&x2<t&&!judge(x1,x2))
{
s[len_s].x=x1;
s[len_s++].y=x2;
}
}
} ll ppow(ll a,ll b)
{
ll ans = 1;
while(b)
{
if(b&1) ans*=a;
b>>=1;
a*=a;
}
return ans;
} void dfs(int m,ll sum)
{
solve(sum);
if(m>=len) return ;
for(int i = 0; i<=e[m]; i++)//由个数去枚举次方,1为a,2为a^2,3为a^3,如此类推,枚举全部t
dfs(m+1,sum*ppow(divi[m],i));
} int main()
{
init();
while(~scanf("%llu",&n))
{
find_div(n);
len_s = 0;
dfs(0,1);
sort(s,s+len_s,cmp);
printf("%d",len_s);
for(int i = 0; i<len_s; i++)
printf(" (%llu,%llu)",s[i].x,s[i].y);
printf("\n");
} return 0;
}

ZOJ3673:1729的更多相关文章

  1. [BZOJ3223]Tyvj 1729 文艺平衡树

    [BZOJ3223]Tyvj 1729 文艺平衡树 试题描述 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作:翻转一个区间,例如原有序序列是5 4 3 2 1,翻转区 ...

  2. BZOJ3223: Tyvj 1729 文艺平衡树 [splay]

    3223: Tyvj 1729 文艺平衡树 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3595  Solved: 2029[Submit][Sta ...

  3. BZOJ 3223: Tyvj 1729 文艺平衡树

    3223: Tyvj 1729 文艺平衡树 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3628  Solved: 2052[Submit][Sta ...

  4. zoj 3673 1729

    1729 Time Limit: 3 Seconds      Memory Limit: 65536 KB 1729 is the natural number following 1728 and ...

  5. bzoj 3223/tyvj 1729 文艺平衡树 splay tree

    原题链接:http://www.tyvj.cn/p/1729 这道题以前用c语言写的splay tree水过了.. 现在接触了c++重写一遍... 只涉及区间翻转,由于没有删除操作故不带垃圾回收,具体 ...

  6. hdoj 1729 Stone Games(SG函数)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1729 看了题目感觉像Nim,但是有范围限制,有点不知道SG函数该怎么写 看了题解,最后才明白该怎么去理 ...

  7. bzoj3223 Tyvj 1729 文艺平衡树(Splay Tree+区间翻转)

    3223: Tyvj 1729 文艺平衡树 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2202  Solved: 1226[Submit][Sta ...

  8. BZOJ 3223: Tyvj 1729 文艺平衡树(splay)

    速度居然进前十了...第八... splay, 区间翻转,用一个类似线段树的lazy标记表示是否翻转 ------------------------------------------------- ...

  9. 3223: Tyvj 1729 文艺平衡树

    3223: Tyvj 1729 文艺平衡树 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1347  Solved: 724[Submit][Stat ...

随机推荐

  1. android入门问题--R文件丢失

    链接   新手刚入门as,发现新创建的项目总是出错 Error:Execution failed for task ':app:mergeDebugResources'. > Error: ja ...

  2. json字符串与java对象的相互转换(jackson)

    1.java对象转换为json字符串 package com.chichung.json; import com.fasterxml.jackson.core.JsonProcessingExcept ...

  3. wpf设置某容器透明,而不应用到容器的子元素的方法

    以Border打比方: <Border.Background> <SolidColorBrush Opacity="0.4" Color="Black& ...

  4. python包安装-centos7/windows

    1.修改pip源 临时使用: 可以在使用pip的时候在后面加上-i参数,指定pip源 eg: pip install scrapy -i https://pypi.tuna.tsinghua.edu. ...

  5. appium+python 【Mac】Android夜神模拟器

    1.官网下载地址:https://www.yeshen.com/ 2.具体的夜神模拟器的介绍请自查 3.下载安装后夜神模拟器后,打开模拟器,进行相应的配置如下: 4. (1).找到android-sd ...

  6. centos6.5/6.3升级安装ImageMagick7.0.1-1

    线上论坛和应用程序的验证码功能都是使用的ImageMagick,但是版本比较老(centos yum安装的ImageMagick6.5.9).接到最新漏洞预报,紧急升级! ImageMagick图象处 ...

  7. 【LOJ】#2067. 「SDOI2016」硬币游戏

    题解 c一样的就是一个独立的游戏 我们对于2和3的指数 sg[i][j] 表示\(c \cdot 2^i \cdot 3^j\)的棋子,只有这个硬币是反面,翻转的硬币是正面的sg值 枚举sg函数所有可 ...

  8. 【LOJ】#2037. 「SHOI2015」脑洞治疗仪

    题解 维护区间内1的个数,左边数0的长度,右边数0的长度,区间内0区间最长个数,覆盖标记 第一种操作区间覆盖0 第二种操作查询\([l_0,r_0]\)中1的个数,区间覆盖0,然后覆盖时找到相对应的区 ...

  9. 【LOJ】#2672. 「NOI2012」魔幻棋盘

    题解 代码7.1KB,人傻代码长 恶心死我了这代码真的把我写恶心了= = 想一想就知道这个东西--维护到中心的差分,然后用二维线段树维护一下矩形的gcd 嗯,我说完了,你写吧. 首先这个二维线段树的单 ...

  10. 【51nod】1564 区间的价值

    题解 这个要注意到一个长度大的区间的最大价值一定比长度小的区间的价值要大 然后我们以每个点为最小值,显然区间越长最大值越大,然后我们更新最大区间长度的取值,这个可以用单调栈求这个最小值能更新到的左右端 ...