ZOJ3673:1729
1729 is the natural number following 1728 and preceding 1730. It is also known as the Hardy-Ramanujan number after a famous anecdote of the British mathematician G. H. Hardy regarding
a hospital visit to the Indian mathematician Srinivasa Ramanujan. In Hardy's words:
I remember once going to see him when he was ill at Putney. I had ridden in taxi cab number 1729 and remarked that the number seemed to me rather a dull one, and that I hoped it was not an unfavorable omen. "No," he replied, "it is a very interesting
number; it is the smallest number expressible as the sum of two (positive) cubes in two different ways."
The two different ways are these: 1729 = 13 + 123 = 93 + 103
Now your task is to count how many ways a positive number can be expressible as the sum of two positive cubes in. All the numbers in this task can be expressible as the sum of two positive cubes in at least one way.
Input
There're nearly 20,000 cases. Each case is a positive integer in a single line. And all these numbers are greater than 1 and less than 264.
Output
Please refer to the sample output. For each case, you should output a line. First the number of ways n. Then followed by n pairs of integer, (ai,bi),
indicating a way the given number can be expressible as the sum of ai's cube and bi's. (ai≤ bi, and a1< a2<
...< an)
Sample Input
9
4104
2622104000
21131226514944
48988659276962496
Sample Output
1 (1,2)
2 (2,16) (9,15)
3 (600,1340) (678,1322) (1020,1160)
4 (1539,27645) (8664,27360) (11772,26916) (17176,25232)
5 (38787,365757) (107839,362753) (205292,342952) (221424,336588) (231518,331954)
Hint
Although most numbers cannot be expressible as the sum of two positive cubes, the vast majority of numbers in this task can be expressible as the sum of two positive cubes in two or more ways.
题意比較简单,就不解释了
这题还真是弄了好久,再加上犯的各种小错误,可是最终算是搞出来了,不easy啊。。。
思路:要求满足的m=a3+b3=(a+b)(a2-ab+b2)的(a,b)组合。
令t=a+b,则t一定是m的约数,所以应枚举m的全部约数。
然后能够得到
a+b=t
ab=(t2-m/t)/3=p
继而转化为a2-ta+p=0是否有正整数解就能够了。
再就是注意范围要用unsigned long long。
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <algorithm>
using namespace std;
#define ll unsigned long long
#define maxn 2642246//2^64次方的开立方
#define L 5000001
ll n;
ll prime[L],divi[500],e[500];
int len,len_prime,len_s;
bool flag[L] = {false};
struct node
{
ll x,y;
} s[1005]; int cmp(node x,node y)
{
return x.x<y.x;
} void init()//素数且不说,全部合数都能分解成随意素数之积
{
int i,j;
len_prime = 0;
for(i = 2; i<L; i++)
{
if(!flag[i]) prime[len_prime++] = i;//打下素数表
for(int j = 0; j<len_prime && i*prime[j]<L; j++)
{
flag[i*prime[j]] = true;//全部非素数排除
if(i%prime[j]==0) break;
}
}
} void find_div(ll m)//找出m的全部素因子
{
int i;
ll k;
len = 0;
for(i = 0; i<len_prime && prime[i]*prime[i]<=m; i++)
{
if(m%prime[i] == 0)
{
divi[len] = prime[i];//因子保存
k = 1;
m/=prime[i];
while(m%prime[i] == 0)//除尽为止
{
k++;//记录个数
m/=prime[i];
}
e[len++] = k;
}
}
if(m>1)
{
divi[len] = m;
e[len++] = 1;
}
} ll can_sqrt(ll c)//要求整数解,b^2-4*a*c必须能开出整数
{
ll r = sqrt(1.0*c);
if(r*r == c) return r;
return L;
} int judge(ll x,ll y)//看这组解是否已经存在
{
for(int i=0; i<len_s; i++)
if(s[i].x==x&&s[i].y==y)
return 1;
return 0;
} void solve(ll t)//找出解
{
ll x1,x2;
ll k = n/t;
ll r = t*t-k;
if(r>0 && r%3!=0) return ;
r/=3;
ll dis = t*t-4*r;
if(dis<0) return ;
ll c = can_sqrt(dis);
if(c == L) return;
if((t+c)%2 == 0)
{
x1 = (t+c)/2;
x2 = t-x1;
if(x1>x2) swap(x1,x2);
if(x1>0&&x1<t&&x1<maxn&&x2<maxn&&x2>0&&x2<t&&!judge(x1,x2))
{
s[len_s].x=x1;
s[len_s++].y=x2;
}
}
if((t-c)>0 && (t-c)%2 == 0)
{
x1 = (t-c)/2;
x2 = t-x1;
if(x1>x2) swap(x1,x2);
if(x1>0&&x1<t&&x1<maxn&&x2<maxn&&x2>0&&x2<t&&!judge(x1,x2))
{
s[len_s].x=x1;
s[len_s++].y=x2;
}
}
} ll ppow(ll a,ll b)
{
ll ans = 1;
while(b)
{
if(b&1) ans*=a;
b>>=1;
a*=a;
}
return ans;
} void dfs(int m,ll sum)
{
solve(sum);
if(m>=len) return ;
for(int i = 0; i<=e[m]; i++)//由个数去枚举次方,1为a,2为a^2,3为a^3,如此类推,枚举全部t
dfs(m+1,sum*ppow(divi[m],i));
} int main()
{
init();
while(~scanf("%llu",&n))
{
find_div(n);
len_s = 0;
dfs(0,1);
sort(s,s+len_s,cmp);
printf("%d",len_s);
for(int i = 0; i<len_s; i++)
printf(" (%llu,%llu)",s[i].x,s[i].y);
printf("\n");
} return 0;
}
ZOJ3673:1729的更多相关文章
- [BZOJ3223]Tyvj 1729 文艺平衡树
[BZOJ3223]Tyvj 1729 文艺平衡树 试题描述 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作:翻转一个区间,例如原有序序列是5 4 3 2 1,翻转区 ...
- BZOJ3223: Tyvj 1729 文艺平衡树 [splay]
3223: Tyvj 1729 文艺平衡树 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3595 Solved: 2029[Submit][Sta ...
- BZOJ 3223: Tyvj 1729 文艺平衡树
3223: Tyvj 1729 文艺平衡树 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3628 Solved: 2052[Submit][Sta ...
- zoj 3673 1729
1729 Time Limit: 3 Seconds Memory Limit: 65536 KB 1729 is the natural number following 1728 and ...
- bzoj 3223/tyvj 1729 文艺平衡树 splay tree
原题链接:http://www.tyvj.cn/p/1729 这道题以前用c语言写的splay tree水过了.. 现在接触了c++重写一遍... 只涉及区间翻转,由于没有删除操作故不带垃圾回收,具体 ...
- hdoj 1729 Stone Games(SG函数)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1729 看了题目感觉像Nim,但是有范围限制,有点不知道SG函数该怎么写 看了题解,最后才明白该怎么去理 ...
- bzoj3223 Tyvj 1729 文艺平衡树(Splay Tree+区间翻转)
3223: Tyvj 1729 文艺平衡树 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2202 Solved: 1226[Submit][Sta ...
- BZOJ 3223: Tyvj 1729 文艺平衡树(splay)
速度居然进前十了...第八... splay, 区间翻转,用一个类似线段树的lazy标记表示是否翻转 ------------------------------------------------- ...
- 3223: Tyvj 1729 文艺平衡树
3223: Tyvj 1729 文艺平衡树 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1347 Solved: 724[Submit][Stat ...
随机推荐
- C++ : Boost : Rational 有理数类
因为一些不为人知的原因, 我需要一些能减少我程序误差的东西.于是找到了这个类. 然后下载了Boost这个庞大的库. 安装与配置 在官网上找到下载地址, 大概有71MB, 下来来解压到任意位置就好了. ...
- 洛谷P2024食物链
传送门啦 这道题的特殊之处在于对于任意一个并查集,只要告诉你某个节点的物种,你就可以知道所有节点对应的物种. 比如一条长为4的链 甲->乙->丙->丁 ,我们知道乙是A物种.那么甲一 ...
- 【CF767C】Garland
传送门啦 分析: 这个题我是看着翻译做的,感觉不是很难,很普通的一个树形dp 题目大意: 在一棵树上分离出三个子树,使这三个子树的点权和相等. 明确题目意思这个题就简单多了吧. 我们会发现每一棵子树的 ...
- MySQL基础 - 数据库备份
出于安全考虑,数据库备份是必不可少的,毕竟对于互联网公司数据才是价值的源泉~ 距离mysql账号为icebug,密码为icebug_passwd, 数据库为icebug_db mysqldump -u ...
- HDU 5115 Dire Wolf (区间DP)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5115 题目大意:有一些狼,从左到右排列,每只狼有一个伤害A,还有一个伤害B.杀死一只狼的时候,会受到这 ...
- VS Code折腾记 - (1)扯淡
题外话 距离上篇介绍VSCode的文章已经过去四十多天,已经在正式项目作为主力开发工具了. 社区的发展非常快速,更新迭代够快,功能基本已经满足我所需了: 这个系列教程基于最新的vs code 1.8. ...
- HBase(九)HBase表以及Rowkey的设计
一 命名空间 1 命名空间的结构 1) Table:表,所有的表都是命名空间的成员,即表必属于某个命名空间,如果没有指定, 则在 default 默认的命名空间中. 2) RegionServer g ...
- Sublime Text安装SVN插件
下载插件 Sublime Text2/3 SVN插件 点击下载 安装插件 点击设置(Preferences)->浏览程序包(Browse Packages,,,),新建TortoiseSVN文件 ...
- PHP 中文字符串相关
1.字符串长度 中文字符串使用strlen() 获取字符串长度时一个UTF8的中文字符是3个字节长度:使用mb_strlen(),选定内码为UTF8,则会将一个中文字符当作长度1来计算 在对含中文字符 ...
- zoj-1610线段树刷题
title: zoj-1610线段树刷题 date: 2018-10-16 16:49:47 tags: acm 刷题 categories: ACM-线段树 概述 这道题是一道简单的线段树区间染色问 ...