Support Vector Machine(2):Lagrange Duality求解线性可分SVM的最佳边界
在上篇文章《Support Vector Machine(1):线性可分集的决策边界》中,我们最后得到,求SVM最佳Margin的问题,转化为了如下形式:

到这一步后,我个人又花了很长的时间去查阅资料,因为数学较差的原因,理解起来相当慢,不过探索的乐趣也就在于不断的打破瓶颈向前,OK继续。上述的问题等价于:

而后我们引入广义拉格朗日函数,利用拉格朗日对偶性来求解此问题。首先明确一下,我们做这些工作的目的是,消去约束条件,为了好求解问题。广义拉格朗日函数为:

上式分为两部分,拉格朗日前辈的思路是,让后一项达到最大值,然后固定住,则问题等价于求前一项的最小值。既然我们想要消去条件(第二项),那么就要证明条件是没用的。也就是说,无论给不给出,这个条件都会成立,那必然就可以舍弃!所以说来,我们考虑,这个世界上只存在两种可能:

首先,我们考虑<1的情况,即不满足原问题的条件,则广义拉格朗日函数的第二项,其最大值会趋于无穷,那么我们没法求该式子的最小值,这个条件也就会被放弃!而在大于等于一的情况下,函数的第二项会趋向于0,也就是说,当我们求整个公式的最小值时,会天然的选择满足条件的一侧,从而将原问题转化为:

然后我们考虑下一个问题,对偶。刚才,我们先把着眼点放在第二项上,将其最大化,然后再将第一项最小化从而转化了原问题。那么,如果我们再看一下这个公式:
如果将alpha视为常量(取为alpha'),然后将w和b作为变量来最小化这个函数,可知第二项小于等于第一次我们推导的公式。为什么,因为刚才我们把第二项做了max,而现在却是取为alpha',max>=any。也即:

现在确定了w和b,我们再将alpha'来做变换,取最大值,可知:

由此得到拉格朗日对偶问题(Lagrange Dual Problem)。

在一般条件下,
≤
,但在某些特殊情况下,二者却是等价的,这种情况叫做强对偶。而我们求解SVM的最佳边界,就要用强对偶下的KKT(Karush–Kuhn–Tucker conditions)条件来完成。KKT条件如下:

在第三个条件中,我们如果回想,g(w)是什么?可以依稀记得:

也就是说,此处令alpha>0即g(w)=0的解,是在我们的margin(s)上的,即它们就是support vectors
求解步骤:
1、固定住alpha,对w和b分别求偏导数,让其等于0:

带回之前的L,得到:

推导过程如下:

一定要注意x是转置的。为什么a和y不转置?因为a是常数呀,y呢?y是分类呀,-1或者1,所以无需转置。则问题转化为:

利用SMO继续求解的过程,请见:SMO算法
---------------------------------------------------------------------------------------------------------------------------------------
声明几点:
1、要特别感谢这篇文章:简易解说拉格朗日对偶(Lagrange duality),特别喜欢这种平易近人的数学讲解。
2、支持向量机通俗导论写的相当详尽,个人拜读了不下20遍,依然在继续学习中。
3、李航老师的《统计学习方法》中,也讲的很透彻。
我是个看到类似‘拉格朗日’这种字眼就害怕的人,拜谢前人的智慧和分享精神。
Support Vector Machine(2):Lagrange Duality求解线性可分SVM的最佳边界的更多相关文章
- Support Vector Machine(1):线性可分集的决策边界
与Logistuc Regression相比,SVM是一种优化的分类算法,其动机是寻找一个最佳的决策边界,使得从决策边界与各组数据之间存在margin,并且需要使各侧的margin最大化.比较容易理解 ...
- 支持向量机(Support Vector Machine,SVM)—— 线性SVM
支持向量机(Support Vector Machine,简称 SVM)于 1995 年正式发表,由于其在文本分类任务中的卓越性能,很快就成为机器学习的主流技术.尽管现在 Deep Learnin ...
- A glimpse of Support Vector Machine
支持向量机(support vector machine, 以下简称svm)是机器学习里的重要方法,特别适用于中小型样本.非线性.高维的分类和回归问题.本篇希望在正篇提供一个svm的简明阐述,附录则提 ...
- 机器学习之支持向量机(Support Vector Machine)
转载请注明出处:http://www.cnblogs.com/Peyton-Li/ 支持向量机 支持向量机(support vector machines,SVMs)是一种二类分类模型.它的基本模型是 ...
- 支持向量机 support vector machine
SVM(support Vector machine) (1) SVM(Support Vector Machine)是从瓦普尼克(Vapnik)的统计学习理论发展而来的,主要针对小样本数据进行学习. ...
- 支持向量机SVM(Support Vector Machine)
支持向量机(Support Vector Machine)是一种监督式的机器学习方法(supervised machine learning),一般用于二类问题(binary classificati ...
- 5. support vector machine
1. 了解SVM 1. Logistic regression回顾 Logistic regression目的是从特征中学习出一个0/1二分类模型,而这个模型是将特性的线性组合作为自变量,由于自变量的 ...
- 机器学习算法 --- SVM (Support Vector Machine)
一.SVM的简介 SVM(Support Vector Machine,中文名:支持向量机),是一种非常常用的机器学习分类算法,也是在传统机器学习(在以神经网络为主的深度学习出现以前)中一种非常牛X的 ...
- 机器学习技法总结(一):支持向量机(linear support vector machine,dual support vector machine)
第一阶段技法: large margin (the relationship between large marin and regularization), hard-SVM,soft-SVM,du ...
随机推荐
- [BZOJ 3731] Gty的超级妹子树 (树分块)
[BZOJ 3731] Gty的超级妹子树 (树分块) 题面 给出一棵树(或森林),每个点都有一个值.现在有四种操作 1.查询x子树里>y的值有多少个 2.把点x的值改成y 3.添加一个新节点, ...
- Hystrix (容错,回退,降级,缓存)
Hystrix熔断机制就像家里的保险丝一样,若同时使用高功率的电器,就会烧坏电路,这时候保险丝自动断开就有效的保护了电路.而我们程序中也同样是这样.例如若此时数据库压力太大速度很慢,此时还有不断的请求 ...
- 图片,word,Excel等附件上传
@ResponseBody @RequestMapping("/upload") public String upload(HttpServletRequest request, ...
- 你的package包名有问题!
今天在Eclipse中运行我的Java程序中,就弹出了以下消息的窗口: 注意窗口的名字为Java Virtual Machine Launcher . Error : A JNI error has ...
- linux Sersync 上配置客户端
1.安装 Rsync 并配置相关权限 在 SERSYNC 上配置 RSYNC 客户端相关权限认证: [root@SERSYNC /]# yum install rsync -y [root@SERSY ...
- this与super的区别
调用super()的语句必须要写在子类构造方法的第一行. super()是在子类中调用父类的构造方法:this()是在同一类中调用其它方法. super()和this()都需要放在构造函数的第一行. ...
- 【LeetCode】动态规划(下篇共39题)
[600] Non-negative Integers without Consecutive Ones [629] K Inverse Pairs Array [638] Shopping Offe ...
- ARM平台常用性能测试方法
测试磁盘读写速度: 通过安装hdparm,可以测试EMMC的读写速度: dolphin@localhost:~$ sudo apt-get install hdparm dolphin@localho ...
- python学习笔记(十二)随机数模块
import random,string print(random.randint(1,199))#1-199随机取一个整数,包含199 print(string.digits)#所有的数字0-9 p ...
- c# 生成文件目录树
class Program { //遍历目录名含有M00到M11的目录 //生成文件目录树(去除文件名中含有scc\Designer\designer\resx的文件) //生成的文件保存在D:\\a ...