在上篇文章《Support Vector Machine(1):线性可分集的决策边界》中,我们最后得到,求SVM最佳Margin的问题,转化为了如下形式:

到这一步后,我个人又花了很长的时间去查阅资料,因为数学较差的原因,理解起来相当慢,不过探索的乐趣也就在于不断的打破瓶颈向前,OK继续。上述的问题等价于:

而后我们引入广义拉格朗日函数,利用拉格朗日对偶性来求解此问题。首先明确一下,我们做这些工作的目的是,消去约束条件,为了好求解问题。广义拉格朗日函数为:

上式分为两部分,拉格朗日前辈的思路是,让后一项达到最大值,然后固定住,则问题等价于求前一项的最小值。既然我们想要消去条件(第二项),那么就要证明条件是没用的。也就是说,无论给不给出,这个条件都会成立,那必然就可以舍弃!所以说来,我们考虑,这个世界上只存在两种可能:

  

首先,我们考虑<1的情况,即不满足原问题的条件,则广义拉格朗日函数的第二项,其最大值会趋于无穷,那么我们没法求该式子的最小值,这个条件也就会被放弃!而在大于等于一的情况下,函数的第二项会趋向于0,也就是说,当我们求整个公式的最小值时,会天然的选择满足条件的一侧,从而将原问题转化为:

然后我们考虑下一个问题,对偶。刚才,我们先把着眼点放在第二项上,将其最大化,然后再将第一项最小化从而转化了原问题。那么,如果我们再看一下这个公式:如果将alpha视为常量(取为alpha'),然后将w和b作为变量来最小化这个函数,可知第二项小于等于第一次我们推导的公式。为什么,因为刚才我们把第二项做了max,而现在却是取为alpha',max>=any。也即:

现在确定了w和b,我们再将alpha'来做变换,取最大值,可知:

由此得到拉格朗日对偶问题(Lagrange Dual Problem)。

在一般条件下,,但在某些特殊情况下,二者却是等价的,这种情况叫做强对偶。而我们求解SVM的最佳边界,就要用强对偶下的KKT(Karush–Kuhn–Tucker conditions)条件来完成。KKT条件如下:

在第三个条件中,我们如果回想,g(w)是什么?可以依稀记得:

也就是说,此处令alpha>0即g(w)=0的解,是在我们的margin(s)上的,即它们就是support vectors

求解步骤:

1、固定住alpha,对w和b分别求偏导数,让其等于0:

带回之前的L,得到:

推导过程如下:

一定要注意x是转置的。为什么a和y不转置?因为a是常数呀,y呢?y是分类呀,-1或者1,所以无需转置。则问题转化为:

利用SMO继续求解的过程,请见:SMO算法

---------------------------------------------------------------------------------------------------------------------------------------

声明几点:

1、要特别感谢这篇文章:简易解说拉格朗日对偶(Lagrange duality),特别喜欢这种平易近人的数学讲解。

2、支持向量机通俗导论写的相当详尽,个人拜读了不下20遍,依然在继续学习中。

3、李航老师的《统计学习方法》中,也讲的很透彻。

我是个看到类似‘拉格朗日’这种字眼就害怕的人,拜谢前人的智慧和分享精神。

Support Vector Machine(2):Lagrange Duality求解线性可分SVM的最佳边界的更多相关文章

  1. Support Vector Machine(1):线性可分集的决策边界

    与Logistuc Regression相比,SVM是一种优化的分类算法,其动机是寻找一个最佳的决策边界,使得从决策边界与各组数据之间存在margin,并且需要使各侧的margin最大化.比较容易理解 ...

  2. 支持向量机(Support Vector Machine,SVM)—— 线性SVM

      支持向量机(Support Vector Machine,简称 SVM)于 1995 年正式发表,由于其在文本分类任务中的卓越性能,很快就成为机器学习的主流技术.尽管现在 Deep Learnin ...

  3. A glimpse of Support Vector Machine

    支持向量机(support vector machine, 以下简称svm)是机器学习里的重要方法,特别适用于中小型样本.非线性.高维的分类和回归问题.本篇希望在正篇提供一个svm的简明阐述,附录则提 ...

  4. 机器学习之支持向量机(Support Vector Machine)

    转载请注明出处:http://www.cnblogs.com/Peyton-Li/ 支持向量机 支持向量机(support vector machines,SVMs)是一种二类分类模型.它的基本模型是 ...

  5. 支持向量机 support vector machine

    SVM(support Vector machine) (1) SVM(Support Vector Machine)是从瓦普尼克(Vapnik)的统计学习理论发展而来的,主要针对小样本数据进行学习. ...

  6. 支持向量机SVM(Support Vector Machine)

    支持向量机(Support Vector Machine)是一种监督式的机器学习方法(supervised machine learning),一般用于二类问题(binary classificati ...

  7. 5. support vector machine

    1. 了解SVM 1. Logistic regression回顾 Logistic regression目的是从特征中学习出一个0/1二分类模型,而这个模型是将特性的线性组合作为自变量,由于自变量的 ...

  8. 机器学习算法 --- SVM (Support Vector Machine)

    一.SVM的简介 SVM(Support Vector Machine,中文名:支持向量机),是一种非常常用的机器学习分类算法,也是在传统机器学习(在以神经网络为主的深度学习出现以前)中一种非常牛X的 ...

  9. 机器学习技法总结(一):支持向量机(linear support vector machine,dual support vector machine)

    第一阶段技法: large margin (the relationship between large marin and regularization), hard-SVM,soft-SVM,du ...

随机推荐

  1. [BZOJ 3731] Gty的超级妹子树 (树分块)

    [BZOJ 3731] Gty的超级妹子树 (树分块) 题面 给出一棵树(或森林),每个点都有一个值.现在有四种操作 1.查询x子树里>y的值有多少个 2.把点x的值改成y 3.添加一个新节点, ...

  2. Hystrix (容错,回退,降级,缓存)

    Hystrix熔断机制就像家里的保险丝一样,若同时使用高功率的电器,就会烧坏电路,这时候保险丝自动断开就有效的保护了电路.而我们程序中也同样是这样.例如若此时数据库压力太大速度很慢,此时还有不断的请求 ...

  3. 图片,word,Excel等附件上传

    @ResponseBody @RequestMapping("/upload") public String upload(HttpServletRequest request, ...

  4. 你的package包名有问题!

    今天在Eclipse中运行我的Java程序中,就弹出了以下消息的窗口: 注意窗口的名字为Java Virtual Machine Launcher . Error : A JNI error has ...

  5. linux Sersync 上配置客户端

    1.安装 Rsync 并配置相关权限 在 SERSYNC 上配置 RSYNC 客户端相关权限认证: [root@SERSYNC /]# yum install rsync -y [root@SERSY ...

  6. this与super的区别

    调用super()的语句必须要写在子类构造方法的第一行. super()是在子类中调用父类的构造方法:this()是在同一类中调用其它方法. super()和this()都需要放在构造函数的第一行. ...

  7. 【LeetCode】动态规划(下篇共39题)

    [600] Non-negative Integers without Consecutive Ones [629] K Inverse Pairs Array [638] Shopping Offe ...

  8. ARM平台常用性能测试方法

    测试磁盘读写速度: 通过安装hdparm,可以测试EMMC的读写速度: dolphin@localhost:~$ sudo apt-get install hdparm dolphin@localho ...

  9. python学习笔记(十二)随机数模块

    import random,string print(random.randint(1,199))#1-199随机取一个整数,包含199 print(string.digits)#所有的数字0-9 p ...

  10. c# 生成文件目录树

    class Program { //遍历目录名含有M00到M11的目录 //生成文件目录树(去除文件名中含有scc\Designer\designer\resx的文件) //生成的文件保存在D:\\a ...