题意 : 找出给定序列长度最小的子序列,子序列的和要求满足大于或者等于 S,如果存在则输出最小长度、否则输出 0(序列的元素都是大于 0 小于10000)

分析 : 有关子序列和的问题,都可以考虑采用先构造前缀和的方式来进行接下来的操作 ( 任意子序列的和都能由某两个前缀和的差表示 )。

二分做法 ==> 我们枚举起点,对于每一个起点 St 二分查找看看 St 后面有没有前缀和是大于或者等于 [ St的前缀和 ] + S 的,如果有说明从当前起点开始有一个终点使得起终之和是大于或者等于 S 的,在这个过程中维护最小长度即可!时间复杂度为 O(nlogn)

#include<bits/stdc++.h>
using namespace std;
;

int arr[maxn], sum[maxn];
int main(void)
{
    int nCase;
    scanf("%d", &nCase);
    sum[] = ;
    while(nCase--){
        int n, s;
        scanf("%d %d", &n, &s);

        ; i<=n; i++){
            scanf("%d", &arr[i]);
            sum[i] = sum[i-] + arr[i];
        }

        if(sum[n] < s){
            puts(");
            continue;
        }

        int ans = n;
        ; i<=n; i++){
            ;
            int en = lower_bound(sum+st, sum+n, sum[st]+s) - sum;
            //printf("%d %d\n", st, en);
            if(sum[en] - sum[st] < s) continue;
            ans = min(ans, en - st);
        }

        printf("%d\n", ans);
    }
    ;
}

尺取做法 ==> 如果有一个满足条件的子序列为 arr[st]...arr[en-1] >= S,那么肯定有 arr[st+1]...arr[en-2] < arr[st]...arr[en-2] < S,所以如果将 st+1 作为起点也有满足条件的序列且令其终点为en'-1,那么必定有 en'-1 >= en-1,那么也就是说当前枚举完 st 这个点,其贡献的答案是 (en-1)-st+1,现在我们考虑 st+1 即下一个起点的时候考虑的终点应该是要考虑大于或者等于 en-1 的点,故尺取是正确的解法。时间复杂度为O(n)

///尺取法
#include<bits/stdc++.h>
using namespace std;
;

int sum[maxn];
int main(void)
{
    sum[] = ;

    int nCase;
    scanf("%d", &nCase);
    while(nCase--){
        int n, s;
        scanf("%d %d", &n, &s);

        int tmp;
        ; i<=n; i++)
            scanf("%d", &tmp),
            sum[i] = sum[i-] + tmp;///统计前缀和

        if(sum[n] < s){
            puts(");
            continue;
        }

        int L, R, ans;///左指针、右指针
        ans = n;
        L = R = ;

        while(L <= R && R <= n){
            if(sum[R] - sum[L] < s) R++;
            else{
                ans = min(ans, R-L);
                L++;
            }
        }

        printf("%d\n", ans);
    }
    ;
}

POJ 3061 Subsequence ( 二分 || 尺取法 )的更多相关文章

  1. POJ 3061 Subsequence ( 尺取法)

    题目链接 Description A sequence of N positive integers (10 < N < 100 000), each of them less than ...

  2. POJ 3061 Subsequence(尺取法)

    题目链接: 传送门 Subsequence Time Limit: 1000MS     Memory Limit: 65536K 题目描述 给定长度为n的数列整数以及整数S.求出总和不小于S的连续子 ...

  3. POJ 3061 Subsequence 二分或者尺取法

    http://poj.org/problem?id=3061 题目大意: 给定长度为n的整列整数a[0],a[1],--a[n-1],以及整数S,求出总和不小于S的连续子序列的长度的最小值. 思路: ...

  4. poj 3061 Subsequence 二分 前缀和 双指针

    地址 http://poj.org/problem?id=3061 解法1 使用双指针 由于序列是连续正数 使用l r 表示选择的子序列的起始 每当和小于要求的时候 我们向右侧扩展 增大序列和 每当和 ...

  5. Poj 3061 Subsequence(二分+前缀和)

    Subsequence Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 12333 Accepted: 5178 Descript ...

  6. POJ 3061 Subsequence 二分查找

    题目大意:给出长度为n的一个序列,给出一个数字S,求长度最短的序列和大于等于S的连续子序列,输出该长度,如果没有答案输出0. 题目思路:看数据范围,这道题就是卡时间的.我们可以用sum[i]记录前i项 ...

  7. 题解报告:poj 3061 Subsequence(前缀+二分or尺取法)

    Description A sequence of N positive integers (10 < N < 100 000), each of them less than or eq ...

  8. POJ 3061 Subsequence【二分答案】||【尺取法】

    <题目链接> 题目大意: 给你一段长度为n的整数序列,并且给出一个整数S,问你这段序列中区间之和大于等于S的最短区间长度是多少. 解题分析:本题可以用二分答案做,先求出前缀和,然后枚举区间 ...

  9. POJ 3061 Subsequence 尺取法 POJ 3320 Jessica's Reading Problem map+set+尺取法

    Subsequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13955   Accepted: 5896 Desc ...

随机推荐

  1. 2.转发。基于itchat的微信消息同步机器人

    原文:https://www.jianshu.com/p/7aeadca0c9bd# 看到了该网址有基于itchat的微信消息同步机器人,转过来继续研究.以下是转过来的: 最近 全栈数据工程师养成攻略 ...

  2. 安卓手机上传同一张图片第二次不触发onchange

    清空上一次file内部的值  <script type="text/javascript"> var file = document.getElementById(&q ...

  3. 深入理解java:1.1. 类加载器

    从java的动态性到类加载机制   我们知道,Java是一种动态语言. 那么怎样理解这个“动态”呢? 或者说一门语言具备了什么特性,才能称之为动态语言呢? 对于java,我是这样理解的. 我们都知道J ...

  4. 2017沈阳区域赛Infinite Fraction Path(BFS + 剪枝)

    Infinite Fraction Path Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java ...

  5. MySQL服务意外停止

    先说一下,发现MySQL服务停了,启动就又好了,但是好奇服务意外停止的原因,所以看了一下MySQL的错误日志. 但是到底是哪个错误导致MySQL服务意外终止,还没有定论,故有了此篇文章,还望知道原因的 ...

  6. 3.golang 的注释

    package main import ( "fmt" "math" ) func main() { fmt.Println(pi(5000)) } // pi ...

  7. 三、JVM — 类加载过程

    类加载过程 加载 验证 准备 解析 初始化 类加载过程 Class 文件需要加载到虚拟机中之后才能运行和使用,那么虚拟机是如何加载这些 Class 文件呢? 系统加载 Class 类型的文件主要三步: ...

  8. dsLinq.Count() 引发了“System.NullReferenceException”类型的异常

    DataTable dt = PurchaseArriveInfoBus.GetPurchaseArriveInfo(companyCD, txtArriveNo, txtTitle, txtProv ...

  9. XPath语法以及谓语的结合使用

    /* XPath 术语 节点(Node) 在 XPath 中,有七种类型的节点:元素.属性.文本.命名空间.处理指令.注释以及文档(根)节点.XML 文档是被作为节点树来对待的.树的根被称为文档节点或 ...

  10. js的cookie写入存储与读取

    js的cookie写入存储与读取 在路径url截取需要的数据,存储到cookie里,读取成功并实现跳转. //写cookies 过期时间 2小时后 function setCookie(c_name, ...