题目: 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” ).机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”).现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

来源: https://leetcode-cn.com/problems/unique-paths-ii/

法一: 自己的代码

思路: 如果遇到障碍物,则直接将该位置置0,关键是对障碍物后面位置的处理,由于障碍物置0了,仍然可以直接相加.

# 执行用时 :44 ms, 在所有 python3 提交中击败了98.81% 的用户
# 内存消耗 :12.5 MB, 在所有 python3 提交中击败了99.13%的用户
from typing import List
class Solution:
def uniquePathsWithObstacles(self, obstacleGrid: List[List[int]]) -> int:
m = len(obstacleGrid)
n = len(obstacleGrid[0])
# dp中记录的是到达该位置的路径个数
dp = [[1] * n for i in range(m)]
# 第一行和第一列中障碍物后面的路径个数必定为0,所以先置0
# 将dp第一行的障碍物后面的元素都置0
for p in range(n):
if obstacleGrid[0][p] == 0:
pass
else:
dp[0][p] = 0
while p+1 < n:
p = p + 1
dp[0][p] = 0
break
# 将dp第一列的障碍物后面的元素都置0
for p in range(m):
if obstacleGrid[p][0] == 0:
pass
else:
dp[p][0] = 0
while p+1 < m:
p = p + 1
dp[p][0] = 0
break
# 同62中的方法,如果遇到障碍物了,直接将dp中的相应位置置0
for i in range(1, m):
for j in range(1, n):
if obstacleGrid[i][j] == 0:
dp[i][j] = dp[i][j - 1] + dp[i - 1][j]
else:
dp[i][j] = 0
return dp[-1][-1]
if __name__ == '__main__':
duixiang = Solution()
a = duixiang.uniquePathsWithObstacles(
[[1],[0]])

法二: 官方解法

思路: 直接在原数据上修改,节省了空间,要学会里面obstacleGrid[i][0] = int(obstacleGrid[i][0] == 0 and obstacleGrid[i-1][0] == 1)的这个写法.

class Solution(object):
def uniquePathsWithObstacles(self, obstacleGrid):
m = len(obstacleGrid)
n = len(obstacleGrid[0])
if obstacleGrid[0][0] == 1:
return 0
obstacleGrid[0][0] = 1
# 直接在原来的数据上做修改,节省了空间,前提是要先判断左上角的位置是否为1
for i in range(1,m):
# 这里利用了布尔变量的特性,int(True)为1,int(False)为0.
# 这个写法很巧妙,一旦遇到一个1就将它和它后面所有的数都置0,要学会这个写法
obstacleGrid[i][0] = int(obstacleGrid[i][0] == 0 and obstacleGrid[i-1][0] == 1)
for j in range(1, n):
obstacleGrid[0][j] = int(obstacleGrid[0][j] == 0 and obstacleGrid[0][j-1] == 1)
for i in range(1,m):
for j in range(1,n):
if obstacleGrid[i][j] == 0:
obstacleGrid[i][j] = obstacleGrid[i-1][j] + obstacleGrid[i][j-1]
else:
obstacleGrid[i][j] = 0
return obstacleGrid[m-1][n-1]
if __name__ == '__main__':
duixiang = Solution()
a = duixiang.uniquePathsWithObstacles(
[[0,0,0],[0,1,0],[0,0,0]])
print(a)

sd

63不同路径II的更多相关文章

  1. Leetcode之动态规划(DP)专题-63. 不同路径 II(Unique Paths II)

    Leetcode之动态规划(DP)专题-63. 不同路径 II(Unique Paths II) 初级题目:Leetcode之动态规划(DP)专题-62. 不同路径(Unique Paths) 一个机 ...

  2. Java实现 LeetCode 63 不同路径 II(二)

    63. 不同路径 II 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为"Start" ). 机器人每次只能向下或者向右移动一步.机器人试图达到网格的右下角(在 ...

  3. 刷题-力扣-63. 不同路径 II

    63. 不同路径 II 题目链接 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/unique-paths-ii/ 著作权归领扣网络所有.商业转 ...

  4. 63.不同路径II

    目录 63.不同路径Ⅱ 题目 题解 63.不同路径Ⅱ 题目 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为"Start" ). 机器人每次只能向下或者向右移动 ...

  5. [LeetCode] 63. 不同路径 II ☆☆☆(动态规划)

    描述 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” ). 机器人每次只能向下或者向右移动一步.机器人试图达到网格的右下角(在下图中标记为“Finish”). 现在 ...

  6. 63. 不同路径 II leetcode JAVA

    题目 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” ). 机器人每次只能向下或者向右移动一步.机器人试图达到网格的右下角(在下图中标记为“Finish”). 现在 ...

  7. 63. 不同路径 II

    一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” ). 机器人每次只能向下或者向右移动一步.机器人试图达到网格的右下角(在下图中标记为“Finish”). 现在考虑网 ...

  8. LeetCode 63. 不同路径 II(Unique Paths II)

    题目描述 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” ). 机器人每次只能向下或者向右移动一步.机器人试图达到网格的右下角(在下图中标记为“Finish”). ...

  9. leetcode 63 不同路径II

    二维数组动态规划,还可以采用一维数组进行动态规划. class Solution { public: int uniquePathsWithObstacles(vector<vector< ...

随机推荐

  1. ffmpeg函数05__vcodec_decode_video2()

    vcodec_decode_video2()的作用是解码一帧视频数据

  2. requests结合xpath爬取豆瓣最新上映电影

    # -*- coding: utf-8 -*- """ 豆瓣最新上映电影爬取 # ul = etree.tostring(ul, encoding="utf-8 ...

  3. C++类模板——博客链接

    https://www.jianshu.com/p/70ca94872418 C++类模板,你看我就够了 值得学习~

  4. grunt-contrib-watch 实时监测文件状态

    grunt-contrib-watch:实时监测文件的增删改状态,状态改变时自动执行预定义任务使用watch时,被watch的文件可以分开写,这样可以提高watch的性能,不用每次把没修改的文件也执行 ...

  5. C/C++数据类型判断与转换

    最近总想着写一些通用的代码,然集中收纳到自己的私人库中去,这些代码期望能与公司基础数据结构无关.然而这比较难,因为无论如何,必需要用到一些结构 化的东西,这些与基础引擎等有关,必需极度抽象才可以做到层 ...

  6. 51 Nod 1627瞬间移动(插板法!)

    1627 瞬间移动  基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 有一个无限大的矩形,初始时你在左上角(即第一行第一列),每次你都可以选择一个右 ...

  7. HGOI20190815 题解

    Problem A modsum 求$\sum\limits_{i=1}^{n} \sum\limits_{j=1 , i \neq j}^{m} (n \ mod \ i)(m \ mod \ j) ...

  8. pycharm安装与永久激活

    1.Pycham下载 https://www.jetbrains.com/pycharm/download/#section=windows 直接下载专业版 2.安装 这里就不必细说,直接next就O ...

  9. BZOJ 2655 calc (组合计数、DP、多项式、拉格朗日插值)

    题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2655 题解 据说有一种神仙容斥做法,但我不会. 以及貌似网上大多数人的dp和我的做法都不 ...

  10. Unity3D_(Shuriken粒子系统)制作简单的烟花爆炸效果

    Unity中的粒子系统可以用于制作特效,如开枪火花效果,简单爆炸效果等.(毕竟程序员不是设计师,简单的特效都没有问题,要制作一些非常美观的特效还是需要多了解跟美术有关的知识.) 粒子系统实现一个简单的 ...