http://www.lydsy.com/JudgeOnline/problem.php?id=3158 (题目链接)

题意

  给出n个装置,每个装置i有一个特征值a[i]和一个能量值b[i],要求选出能量值和尽可能大的装置,使它们两两之间至少满足一下两条件中的1个条件:1.不存在T,a[i]*a[i]+a[j]*a[j]=T*T;2.gcd(a[i],a[j])>1。

Solution

  通过观察与思考,我们可以发现,如果把不符合条件的两个装置用边连接起来,最后要求的就是带权最大独立集,然而这是一般图,难道还要去写最大团?这是不现实的,考虑它是否满足二分图的性质。

  写写画画以后,发现:

    对于两个偶数来说,它们之间的gcd至少为2,也就是满足第二个条件,任意两个偶数之间都没有边相连。

    对于两个奇数来说,它们的平方和$=2*(2a^2+2b^2+2a+2b+1)$,偶数*奇数,一定满足条件1,任意两个奇数之间都没有边相连。

  于是这就是个二分图了,奇数放左边,偶数放右边,然后最小割求二分图带权最大独立集。

细节

  sqrt出来放到一个LL里面。。。如果放在一个double中,那么就不是正整数T了。。。难怪一直0ms Wa。。

代码

// bzoj3158
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<queue>
#define LL long long
#define inf 2147483640
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=1010;
struct edge {int to,next,w;}e[maxn*maxn*2];
int head[maxn],d[maxn];
LL a[maxn],b[maxn];
int cnt=1,n,m,es,et,ans; int gcd(int a,int b) {return b==0 ? a : gcd(b,a%b);}
void link(int u,int v,int w) {
e[++cnt]=(edge){v,head[u],w};head[u]=cnt;
e[++cnt]=(edge){u,head[v],0};head[v]=cnt;
}
bool bfs() {
memset(d,-1,sizeof(d));
queue<int> q;q.push(es);d[es]=0;
while (!q.empty()) {
int x=q.front();q.pop();
for (int i=head[x];i;i=e[i].next) if (e[i].w && d[e[i].to]<0) {
d[e[i].to]=d[x]+1;
q.push(e[i].to);
}
}
return d[et]>0;
}
int dfs(int x,int f) {
if (x==et || f==0) return f;
int used=0,w;
for (int i=head[x];i;i=e[i].next) if (e[i].w && d[e[i].to]==d[x]+1) {
w=dfs(e[i].to,min(e[i].w,f-used));
e[i].w-=w;e[i^1].w+=w;
used+=w;if (used==f) return used;
}
if (!used) d[x]=-1;
return used;
}
void Dinic() {while (bfs()) ans-=dfs(es,inf);}
int main() {
scanf("%d",&n);
for (int i=1;i<=n;i++) scanf("%lld",&a[i]);
for (int i=1;i<=n;i++) scanf("%lld",&b[i]),ans+=b[i];
es=n+1;et=n+2;
for (int i=1;i<=n;i++) {
if (a[i]%2==1) link(es,i,b[i]);
else link(i,et,b[i]);
}
for (int i=1;i<=n;i++) {
if (a[i]%2==0) continue;
for (int j=1;j<=n;j++) if (a[j]%2==0) {
if (gcd(a[i],a[j])!=1) continue;
LL x=sqrt(a[i]*a[i]+a[j]*a[j]);
if (x*x!=a[i]*a[i]+a[j]*a[j]) continue;
link(i,j,inf);
}
}
Dinic();
printf("%d",ans);
return 0;
}

  

【bzoj3158】 千钧一发的更多相关文章

  1. BZOJ3158 千钧一发(最小割)

    可以看做一些物品中某些互相排斥求最大价值.如果这是个二分图的话,就很容易用最小割了. 观察其给出的条件间是否有什么联系.如果两个数都是偶数,显然满足条件二:而若都是奇数,则满足条件一,因为式子列出来发 ...

  2. BZOJ3158: 千钧一发

    [传送门:BZOJ3158] 简要题意: 给出n个机器,每个机器有a[i]基础值和b[i]价值 选出一部分机器使得这些机器里面两两至少满足以下两种条件之一: 1.a[i]2+a[j]2!=T2(T为正 ...

  3. [bzoj3158]千钧一发——二分图+网络流

    题目 传送门 题解 很容易建立模型,如果两个点不能匹配,那么连一条边,那么问题就转化为了求一个图上的最大点权独立集. 而我们可以知道: 最大点权独立集+最小点权覆盖集=总权值. 同时最小点权覆盖在一般 ...

  4. 【BZOJ3158】千钧一发 最小割

    [BZOJ3158]千钧一发 Description Input 第一行一个正整数N. 第二行共包括N个正整数,第 个正整数表示Ai. 第三行共包括N个正整数,第 个正整数表示Bi. Output 共 ...

  5. bzoj3158&3275: 千钧一发(最小割)

    3158: 千钧一发 题目:传送门 题解: 这是一道很好的题啊...极力推荐 细看题目:要求一个最大价值,那么我们可以转换成求损失的价值最小 那很明显就是最小割的经典题目啊?! 但是这里两个子集的分化 ...

  6. 【BZOJ-3275&3158】Number&千钧一发 最小割

    3275: Number Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 748  Solved: 316[Submit][Status][Discus ...

  7. BZOJ 3158: 千钧一发

    3158: 千钧一发 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1201  Solved: 446[Submit][Status][Discuss ...

  8. 【BZOJ】【3158】千钧一发

    网络流/最小割 这题跟BZOJ 3275限制条件是一样的= =所以可以用相同的方法去做……只要把边的容量从a[i]改成b[i]就行了- (果然不加当前弧优化要略快一点) /************** ...

  9. bzoj 3158 千钧一发(最小割)

    3158: 千钧一发 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 767  Solved: 290[Submit][Status][Discuss] ...

随机推荐

  1. PAT 1023. 组个最小数 (20)

    给定数字0-9各若干个.你可以以任意顺序排列这些数字,但必须全部使用.目标是使得最后得到的数尽可能小(注意0不能做首位).例如:给定两个0,两个1,三个5,一个8,我们得到的最小的数就是1001555 ...

  2. 执行sudo时报错:effective uid is not 0

    http://jingyan.baidu.com/article/c45ad29cd83d4b051753e232.html     今天将 / 授权给了一个普通用户 导致一些问题. 启事: 操作前一 ...

  3. ImageMagick常用指令详解

    Imagemagick常用指令 (ImageMagick--蓝天白云) (ImageMagick官网) (其他比较有价值的IM参考) (图片自动旋转的前端实现方案) convert 转换图像格式和大小 ...

  4. Burndown chart

    S型的燃尽图 在一次milestone开发过程中,开发者会持续编辑issue列表,每个issue都有自己的生命周期.燃尽图预期这些issues会被线性的消灭掉,所以从第一天直接到最后一天画个直线表示预 ...

  5. 完全背包变型题(hdu5410)

    这是2015年最后一场多校的dp题,当时只怪自己基础太差,想了1个多小时才想出来,哎,9月份好好巩固基础,为区域赛做准备.题目传送门 题目的意思是给你n元钱,m类糖果,每类糖果分别有p, a, b, ...

  6. Python2.4-原理之函数

    此节来自于<Python学习手册第四版>第四部分 一.函数基础 函数的作用在每个编程语言中都是大同小异的,,这个表是函数的相关语句和表达式. 1.编写函数,a.def是可执行代码,pyth ...

  7. 我开源了一个ios应用,你们拿去随便玩

    今天开源一个ios应用,自己写的,你们拿去随便玩.地址是: https://github.com/huijimuhe/prankPro 光拿来玩不理清个来龙去脉玩的也不开心是吧,那我就给你们摆摆来龙去 ...

  8. WebService的两种方式SOAP和REST比较 (转)

    我的读后感:由于第一次接触WebService,对于很多概念不太理解,尤其是看到各个OpenAPI的不同提供方式时,更加疑惑.如google map api采用了AJAX方式,通过javascript ...

  9. 从.NET的宠物商店到Android MVC MVP

    1 一些闲话 记得刚进公司的时候,我们除了做常规的Training Project外,每天还要上课,接受各种技术培训和公司业务介绍.当时第一次知道QA和SQA的区别.Training Project时 ...

  10. 写一个 nodejs npm应用 - webhere

    前言.没图不说话,先上图. What's webhere? 有没有遇到这样的场景:写程序的时候,需要访问一个文件,这个文件 需要是放到一台web服务器上,但是你不是开发的web应用. 所以呢,你不得不 ...