【poj1186】 方程的解数
http://poj.org/problem?id=1186 (题目链接)
题意
已知一个n元高次方程:
其中:x1, x2,…,xn是未知数,k1,k2,…,kn是系数,p1,p2,…pn是指数。且方程中的所有数均为整数。
假设未知数1 <= xi <= M, i=1,,,n,求这个方程的整数解的个数。
Solution
meet in the middle。移项,分两部分搜索,hash判断两次dfs的结果是否相同,统计结果。
代码
// poj1186
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#define MOD 10000007
#define LL long long
#define inf 2147483640
#define Pi 3.1415926535898
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; struct hash {int w,next,num;}h[100000010]; int cnt,ans,n,m,head[MOD],p[10],k[10],pd[1010][1010]; void dfs1(int x,int w) {
if (x>n/2) {
int i=abs(w)%MOD;
bool flag=1;
for (int j=head[i];j;j=h[j].next) if (w==h[j].w) {h[j].num++;flag=0;break;}
if (flag) {h[++cnt].w=w;h[cnt].next=head[i];head[i]=cnt;h[cnt].num++;}
}
else
for (int i=1;i<=m;i++) dfs1(x+1,w+k[x]*pd[i][p[x]]);
}
void dfs2(int x,int w) {
if (x>n) {
int i=abs(w)%MOD;
for (int j=head[i];j;j=h[j].next) if (-w==h[j].w) {ans+=h[j].num;break;}
}
else
for (int i=1;i<=m;i++) dfs2(x+1,w+k[x]*pd[i][p[x]]);
}
int main() {
scanf("%d%d",&n,&m);
for (int i=0;i<=m;i++) {
pd[i][0]=1;
for (int j=1;j<=m;j++) pd[i][j]=pd[i][j-1]*i;
}
for (int i=1;i<=n;i++) scanf("%d%d",&k[i],&p[i]);
dfs1(1,0);
dfs2(n/2+1,0);
printf("%d",ans);
return 0;
}
【poj1186】 方程的解数的更多相关文章
- [折半搜索][哈希]POJ1186方程的解数
题目传送门 这道题明显N数据范围非常小,但是M很大,所以用折半搜索实现搜索算法的指数级优化,将复杂度优化到O(M^(N/2)). 将搜出的两半结果用哈希的方式合并(乘法原理). Code: #incl ...
- POJ 1186 方程的解数
方程的解数 Time Limit: 15000MS Memory Limit: 128000K Total Submissions: 6188 Accepted: 2127 Case Time ...
- 计蒜客 方程的解数 dfs
题目: https://www.jisuanke.com/course/2291/182237 思路: 来自:https://blog.csdn.net/qq_29980371/article/det ...
- NOI2001 方程的解数
1735 方程的解数 http://codevs.cn/problem/1735/ 2001年NOI全国竞赛 时间限制: 5 s 空间限制: 64000 KB 题目描述 Descripti ...
- [ NOI 2001 ] 方程的解数
\(\\\) \(Description\) 已知一个 \(N\) 元高次方程: \[ k_1x_1^{p_1}+k_2x_2^{p_2}+...+k_nx_n^{p_n}=0 \] 要求所有的 \( ...
- cogs 304. [NOI2001] 方程的解数(meet in the middle)
304. [NOI2001] 方程的解数 ★★☆ 输入文件:equation1.in 输出文件:equation1.out 简单对比时间限制:3 s 内存限制:64 MB 问题描述 已 ...
- P5691 [NOI2001]方程的解数
题意描述 方程的解数 求方程 \(\sum_{i=1}^{n}k_ix_i^{p_i}=0(x_i\in [1,m])\) 的解的个数. 算法分析 远古 NOI 的题目就是水 类似于这道题. 做过这道 ...
- [Swust OJ 166]--方程的解数(hash法)
题目链接:http://acm.swust.edu.cn/problem/0166/ Time limit(ms): 5000 Memory limit(kb): 65535 有如下方程组: A1 ...
- NOI2001 方程的解数(双向搜索)
solution 一道非常经典的双向搜索题目,先将前3个未知数枚举一遍得到方程的前半部分所有可能的值,取负存入第一个队列中再将后3个未知数枚举一遍,存入第二个队列中.这样我们只要匹配两个队列中相同的元 ...
随机推荐
- c++ typeid获取类型名-rtti
typeid操作符的作用就是获取一个表达式的类型.返回结果是const type_info&.不同编译器实现的type_info class各不相同.但c++标准保证它会实现一个name()方 ...
- 傻瓜看完都可以简单使用Git
作为当下最流行的版本控制系统,Git是一个分布式版本控制系统,跟SVN等集中式版本控制有很多使用上的不同.万事开头难,想要最快学会使用Git,最简单的就是下了客户端就直接去用,一边用一边学.本文手把手 ...
- Jboss EAP:native management API学习
上一节已经学习了CLI命令行来控制JBOSS,如果想在程序中以编码方式来控制JBOSS,可以参考下面的代码,实际上在前面的文章,用代码控制Jboss上的DataSource,已经有所接触了,API与C ...
- opencv 中对一个像素的rgb值或像素值进行操作的几个常用小办法【转】
You can access the Image pixels in many ways:1. One using the Inbuilt macro2. One using the pointer ...
- Qt学习笔记 信号和槽
槽和普通c++成员函数一样只可以为虚函数,也可以被重用,可以是公有的也可以是私有的,也可以被其它的c++函数调用; 参数也是任意的 唯一不同的是本槽和信号是可以连在一起的,和c#的事件差不多.相连后每 ...
- HoloLens开发手记 - Vuforia开发概述 Vuforia development overview
关于Vuforia,开发AR应用的人基本都会熟悉.之前我也写过一篇关于Vuforia开发的博客:Vuforia AR SDK入门 今天这篇博客则主要是谈谈HoloLens使用Vuforia开发混合现实 ...
- Realm Java的学习、应用、总结
从React Native珠三角沙龙会议了解到Realm这个开源库,然后开始学习.理解和使用Realm.Realm是跨平台.支持多种主流语言,这里主要是对Realm Java结合实际项目的一些情况进行 ...
- [BZOJ2429][HAOI2006]聪明的猴子(MST)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2429 分析:要让最大的最小,所以就是最小生成树上的啦,于是问题就变成了有多少个猴子&g ...
- python作为一种胶水和c/c++
如果需要用 Python 调用 C/C++ 编写的第三方库,只需要一个脚本语言来粘合它们.这个时候,用 Python ctypes 可以很方便地实现调用. StackOverflow 上的 Calli ...
- HTML5+AJAX原生分块上传文件的关键参数设置
processData:false 这是jquery.ajax的一个参数.默认值为true,表示会将非字符串对象自动变成k1=v1&k2=v2的形式,例如一个数组参数{d:[1,2]},到服务 ...