matlab练习程序(加权最小二乘)
起本篇题目还是比较纠结的,原因是我本意打算寻找这样一个算法:在测量数据有比较大离群点时如何估计原始模型。
上一篇曲面拟合是假设测量数据基本符合均匀分布,没有特别大的离群点的情况下,我们使用最小二乘得到了不错的拟合结果。
但是当我加入比如10个大的离群点时,该方法得到的模型就很难看了。所以我就在网上搜了一下,有没有能够剔除离群点的方法。
结果找到了如下名词:加权最小二乘、迭代最小二乘、抗差最小二乘、稳健最小二乘。
他们细节的区别我就不过分研究了,不过这些最小二乘似乎表达的是一个意思:
构造权重函数,给不同测量值不同的权重,偏差大的值权重小,偏差小的权重大,采用迭代最小二乘的方式最优化目标函数。
下面是matlab中robustfit函数权重函数,可以参考一下:
权重函数(Weight Function) | 等式(Equation) | 默认调节常数(Default Tuning Constant) |
---|---|---|
'andrews' | w = (abs(r)<pi) .* sin(r) ./ r | 1.339 |
'bisquare' (default) | w = (abs(r)<1) .* (1 - r.^2).^2 | 4.685 |
'cauchy' | w = 1 ./ (1 + r.^2) | 2.385 |
'fair' | w = 1 ./ (1 + abs(r)) | 1.400 |
'huber' | w = 1 ./ max(1, abs(r)) | 1.345 |
'logistic' | w = tanh(r) ./ r | 1.205 |
'ols' | 传统最小二乘估计 (无权重函数) | 无 |
'talwar' | w = 1 * (abs(r)<1) | 2.795 |
'welsch' | w = exp(-(r.^2)) | 2.985 |
代码如下:
clear all;
close all;
clc; a=;b=;c=-;d=;e=;f=; %系数
n=:0.2:;
x=repmat(n,,);
y=repmat(n',1,96);
z=a*x.^+b*y.^+c*x.*y+d*x+e*y +f; %原始模型
surf(x,y,z) N=;
ind=int8(rand(N,)*+); X=x(sub2ind(size(x),ind(:,),ind(:,)));
Y=y(sub2ind(size(y),ind(:,),ind(:,)));
Z=z(sub2ind(size(z),ind(:,),ind(:,)))+rand(N,)*; %生成待拟合点,加个噪声 Z(:)=Z(:)+; %加入离群点 hold on;
plot3(X,Y,Z,'o'); XX=[X.^ Y.^ X.*Y X Y ones(,)];
YY=Z; C=inv(XX'*XX)*XX'*YY; %最小二乘
z=C()*x.^+C()*y.^+C()*x.*y+C()*x+C()*y +C(); %拟合结果
Cm=C;
mesh(x,y,z) z=C()*X.^+C()*Y.^+C()*X.*Y+C()*X+C()*Y +C();
C0=C;
while
r = z-Z;
w = tanh(r)./r; %权重函数
W=diag(w); C=inv(XX'*W*XX)*XX'*W*YY; %加权最小二乘
z=C()*X.^+C()*Y.^+C()*X.*Y+C()*X+C()*Y +C(); %拟合结果 if norm(C-C0)<1e-10
break;
end
C0=C;
end z=C()*x.^+C()*y.^+C()*x.*y+C()*x+C()*y +C(); %拟合结果
mesh(x,y,z)
结果如下:
图中一共三个曲面,最下层是原模型,最上层是普通最小二乘拟合模型,中间层是加权最小二乘拟合模型。
可以看出,加权最小二乘效果要好一些。
参考:
https://www.cnblogs.com/xiongyunqi/p/3737323.html
https://blog.csdn.net/baidu_35570545/article/details/55212241
matlab练习程序(加权最小二乘)的更多相关文章
- matlab练习程序(最小二乘多项式拟合)
最近在分析一些数据,就是数据拟合的一些事情,用到了matlab的polyfit函数,效果不错. 因此想了解一下这个多项式具体是如何拟合出来的,所以就搜了相关资料. 这个文档介绍的还不错,我估计任何一本 ...
- matlab练习程序(局部加权线性回归)
通常我们使用的最小二乘都需要预先设定一个模型,然后通过最小二乘方法解出模型的系数. 而大多数情况是我们是不知道这个模型的,比如这篇博客中z=ax^2+by^2+cxy+dx+ey+f 这样的模型. 局 ...
- (转)matlab练习程序(HOG方向梯度直方图)
matlab练习程序(HOG方向梯度直方图)http://www.cnblogs.com/tiandsp/archive/2013/05/24/3097503.html HOG(Histogram o ...
- matlab练习程序(SUSAN检测)
matlab练习程序(SUSAN检测) SUSAN算子既可以检测角点也可以检测边缘,不过角点似乎比不过harris,边缘似乎比不过Canny.不过思想还是有点意思的. 主要思想就是:首先做一个和原图像 ...
- matlab练习程序(曲面拟合)
这里用到的还是最小二乘方法,和上一次这篇文章原理差不多. 就是首先构造最小二乘函数,然后对每一个系数计算偏导,构造矩阵乘法形式,最后解方程组. 比如有一个二次曲面:z=ax^2+by^2+cxy+dx ...
- matlab示例程序--Motion-Based Multiple Object Tracking--卡尔曼多目标跟踪程序--解读
静止背景下的卡尔曼多目标跟踪 最近学习了一下多目标跟踪,看了看MathWorks的关于Motion-Based Multiple Object Tracking的Documention. 官网链接:h ...
- IRLS(迭代加权最小二乘)
IRLS用于解决这种目标函数的优化问题(实际上是用2范数来近似替代p范数,特殊的如1范数). 可将其等价变形为加权的线性最小二乘问题: 其中W(t)可看成对角矩阵,每步的w可用下面的序列代替 如果 p ...
- matlab练习程序(透视投影,把lena贴到billboard上)
本练习程序是受到了这个老外博文的启发,感觉挺有意思,就尝试了一下.他用的是opencv,我这里用的是matlab. 过去写过透视投影,当时是用来做倾斜校正的,这次同样用到了透视投影,不过更有意思,是将 ...
- matlab练习程序(多圆交点)
最近总是对计算几何方面的程序比较感兴趣. 多圆求交点,要先对圆两两求交点. 有交点的圆分为相切圆和相交圆. 相切圆求法: 1.根据两圆心求直线 2.求公共弦直线方程 3.求两直线交点即两圆切点. 相交 ...
随机推荐
- kibana从入门到精通-Kibana安装
作者其他ELK快速入门系列文章 Elasticsearch从入门到精通 logstash快速入门实战指南 简介 Kibana 是一款开源的数据分析和可视化平台,它是 Elastic Stack 成员之 ...
- (转)解决 TortoiseGit 诡异的 Bad file number 问题
此问题,请不要使用 rebase, 下载最新的 TortoiseGit 即可: TortoiseGit-2.3中文版与Git安装包_手册: http://download.csdn.net/detai ...
- 日志切割工具logrotate解决Tomcat catalina.out日志过大的问题
一.介绍日志切割logrotate 对于Linux系统安全来说,日志文件是极其重要的工具.不知为何,我发现很多运维同学的服务器上都运行着一些诸如每天切分Nginx日志之类的CRON脚本,大家似乎遗忘了 ...
- 痞子衡嵌入式:ARM Cortex-M内核那些事(1)- 内核架构编年史
大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家介绍的是ARM内核架构历史. 众所周知,ARM公司是一家微处理器行业的知名企业,ARM公司本身并不靠自有的设计来制造或出售CPU,而是将处理器架 ...
- SpringCloud(1) 架构演进和基础知识简介
一.传统架构演进到分布式架构 简介:讲解单机应用和分布式应用架构演进基础知识 (画图) 高可用 LVS+keepalive 1.单体应用:开发速度慢.启动时间长.依赖庞大.等等 2.微服务:易开发.理 ...
- React Native 入门基础知识总结
中秋在家闲得无事,想着做点啥,后来想想,为啥不学学 react native.在学习 React Native 时, 需要对前端(HTML,CSS,JavaScript)知识有所了解.对于JS,可以看 ...
- 翻译:low_priority和high_priority(已提交到MariaDB官方手册)
本文为mariadb官方手册:HIGH_PRIORITY and LOW_PRIORITY的译文. 原文:https://mariadb.com/kb/en/high_priority-and-low ...
- 关于 Cortex-M3 的双堆栈机制
CM3 的堆栈分为两个:主堆栈和进程堆栈. 那么,这两个栈分别在什么情况下使用呢? 我们看一下CM3的控制寄存器(CONTROL):控制寄存器用于定义特权级别,还用于选择当前使用哪个堆栈指针. CON ...
- 第一册:lesson seventy seven。
原文:terrible toothache. Good morning Mr.Croft. Good morning nurse. I want to see the dentist,please. ...
- 第一册:lesson fifty five。
原文: The Sawyer family. The Sawyers live at 87 King street. In the morning Mr.Sawyer goes to work and ...