题目分析:

  裸题。

代码:

 

 #include<bits/stdc++.h>
using namespace std; typedef long long ll; const int BASE = ; #define mp make_pair ll g,p;
ll srt = ;
vector<pair<int,ll> > hash[]; ll fast_pow(ll now,ll pw){
if(pw == ) return now;
ll z = fast_pow(now,pw/);
z *= z ; z %= p;
if(pw & )z *= now,z %= p;
return z;
} void CreatHash(){
ll xm = fast_pow(g,srt);
ll hh = xm;
for(ll i=;(i-)*srt<=INT_MAX;i++,hh = (hh*xm)%p){
hash[hh % BASE].push_back(mp(i,hh));
}
} void read(){
scanf("%lld%lld",&g,&p);
CreatHash();
} ll solve(ll now){
ll hh = g;
for(int i=;i<=;i++,hh=(hh*g)%p){
ll nowp = (hh*now)%p;
for(int j=;j<hash[nowp%BASE].size();j++){
ll out = hash[nowp%BASE][j].second;
if(out == nowp){
out = hash[nowp%BASE][j].first;
return out*srt-i;
}
}
}
} void work(){
int n;scanf("%d",&n);
for(int i=;i<=n;i++){
ll a,b; scanf("%lld%lld",&a,&b);
ll hh = solve(a);
ll key = fast_pow(b,hh);
printf("%lld\n",key);
}
} int main(){
read();
work();
return ;
}

BZOJ5296 [CQOI2018] 破解D-H协议 【数学】【BSGS】的更多相关文章

  1. BZOJ5296 CQOI2018 破解D-H协议 【BSGS】

    BZOJ5296 CQOI2018Day1T1 破解D-H协议 Description Diffie-Hellman密钥交换协议是一种简单有效的密钥交换方法.它可以让通讯双方在没有事先约定密钥(密码) ...

  2. 2018.12.18 bzoj5296: [Cqoi2018]破解D-H协议(bsgs)

    传送门 bsgsbsgsbsgs基础题. 考虑到给的是原根,因此没无解的情况. 于是只需要每次把a,ba,ba,b解出来. 然后可以通过预处理节省一部分时间. 代码: #include<bits ...

  3. 【BZOJ5296】【CQOI2018】破解D-H协议(BSGS)

    [BZOJ5296][CQOI2018]破解D-H协议(BSGS) 题面 BZOJ 洛谷 Description Diffie-Hellman密钥交换协议是一种简单有效的密钥交换方法.它可以让通讯双方 ...

  4. BZOJ_5296_[Cqoi2018]破解D-H协议_BSGS

    BZOJ_5296_[Cqoi2018]破解D-H协议_BSGS Description Diffie-Hellman密钥交换协议是一种简单有效的密钥交换方法.它可以让通讯双方在没有事先约定密钥(密码 ...

  5. BZOJ 5296: [Cqoi2018]破解D-H协议(BSGS)

    传送门 解题思路 \(BSGS\)裸题??要求的是\(g^a =A (mod\) \(p)\),设\(m\)为\(\sqrt p\),那么可以设\(a=i*m-j\),式子变成 \[ g^{i*m-j ...

  6. [CQOI2018]破解D-H协议

    嘟嘟嘟 这不就是个bsgs板儿嘛. 顺便就复习了一下bsgs和哈希表. 头一次觉得我的博客这么好用,一下就懂了:数论学习笔记之高次不定方程 这里再补充几点: 1.关于这一段代码: int S = sq ...

  7. 2018 Arab Collegiate Programming Contest (ACPC 2018) H - Hawawshi Decryption 数学 + BSGS

    H - Hawawshi Decryption 对于一个给定的生成数列 R[ 0 ] 已知, (R[ i - 1 ] * a + b) % p = R[ i ] (p 是 质数), 求最小的 x 使得 ...

  8. LG4454 【[CQOI2018]破解D-H协议】

    先谈一下BSGS算法(传送门) 但是上面这位的程序实现比较繁琐,看下面这位的. clover_hxy这样说 bsgs算法,又称大小步算法(某大神称拔山盖世算法). 主要用来解决 A^x=B(mod C ...

  9. P4454 [CQOI2018]破解D-H协议

    链接 这题并不难只是需要把题读懂 - By ShadderLeave 一句话题意 给定两个数 \(p\)和\(g\),有\(t\)组询问,每组询问给出\(A\)和\(B\) 其中 A = \(g^a ...

随机推荐

  1. 网络应用简记(4):DNS使用

    dns,domain name system,域名系统,把域名转化成ip的系统. 先来看几上工具的使用,这几个工具都能把域名转换成ip,都使用了dns.dns就好比数据库,通过对它的查询,能给url找 ...

  2. Python股票分析系列——基础股票数据操作(二).p4

    该系列视频已经搬运至bilibili: 点击查看 欢迎来到Python for Finance教程系列的第4部分.在本教程中,我们将基于Adj Close列创建烛台/ OHLC图,这将允许我介绍重新采 ...

  3. 448C - Painting Fence(分治)

    题意:给出宽为1高为Ai的木板n条,排成一排,每次上色只能是连续的横或竖并且宽度为1,问最少刷多少次可以使这些木板都上上色 分析:刷的第一步要么是所有的都竖着涂完,要么是先横着把最矮的涂完,如果是第一 ...

  4. 295B - Greg and Graph (floyd逆序处理)

    题意:给出任意两点之间的距离,然后逐个删除这些点和与点相连的边,问,在每次删除前的所有点对的最短距离之和 分析:首先想到的是floyd,但是如果从前往后处理,复杂度是(500)^4,超时,我们从后往前 ...

  5. 通过C#调用,实现js加密代码的反混淆,并运行js函数

    前一篇我测试了vba调用htmlfile做反混淆,并执行js加密函数的代码.本文换成C#实现. 联系QQ:564955427 C#操作JS函数,可以通过ScriptControl组件,但这个组件只能在 ...

  6. JEECG SSO kisso

    kisso: java 基于 Cookie 的 SSO 中间件 kisso https://gitee.com/baomidou/kisso kisso首页.文档和下载 - 基于 Cookie 的 S ...

  7. Yii的操作提示框

    效果如图 HTML + CSS<style> div.error{ background: #FFE0E0; border: 2px solid #FFA0A0; padding: 10p ...

  8. jquery on绑定事件

    描述:给一个或多个元素(当前的或未来的)的一个或多个事件绑定一个事件处理函数.(1.7版本开始支持,是 bind().live() 和 delegate() 方法的新的替代品) 语法:.on( eve ...

  9. Java 里如何实现线程间通信(转载)

    出处:http://www.importnew.com/26850.html 正常情况下,每个子线程完成各自的任务就可以结束了.不过有的时候,我们希望多个线程协同工作来完成某个任务,这时就涉及到了线程 ...

  10. linux关闭触摸板

    关闭触摸板 sudo modprobe -r psmouse 如果打开触摸板就是: sudo modprobe psmouse