【BZOJ4001】[TJOI2015]概率论(生成函数)
【BZOJ4001】[TJOI2015]概率论(生成函数)
题面
题解
这题好仙啊。。。。
设\(g_n\)表示\(n\)个点的二叉树个数,\(f_n\)表示\(n\)个点的二叉树的叶子个数。
最终要求的东西就是\(\frac{f_n}{g_n}\)。
考虑这个玩意怎么转移,先考虑二叉树个数,即怎么求\(f_n\)。
每次我们认为新加入的点作为根节点,那么接下来只需要枚举其左右子树大小就行了,所以得到:
\]
然后考虑怎么求\(f\),我们还是可以枚举一侧的左子树大小,那么只考虑左子树的叶子节点个数,这样子乘上右侧的方案数就是答案。然后左右还可以交换。所以有:
\]
设\(G(x)\)为\(g\)的生成函数,得到:\(G(x)=G(x)^2x+1\),解出来\(G(x)=\frac{1-\sqrt{1-4x}}{2x}\)。
类似的,\(F(x)=2G(x)F(x)x+x\),解出来\(F(x)=\frac{x}{1-2G(x)x}\)。
再把\(G(x)\)带进去,可以解出来\(F(x)=\frac{x}{\sqrt{1-4x}}\)。
发现\((xG(x))'=\frac{1}{\sqrt{1-4x}}=\frac{F(x)}{x}\),进一步可以得到\(f_n=g_{n-1}\)。
然后\(g\)是卡特兰数,所以得到通项\(\frac{2n\choose n}{n+1}\)。
然后答案就是\(\frac{n(n+1)}{2(2n+1)}\)了。
#include<cstdio>
using namespace std;
int main()
{
double n;scanf("%lf",&n);
printf("%.9lf\n",n*(n+1)/(2*(n+n-1)));
return 0;
}
【BZOJ4001】[TJOI2015]概率论(生成函数)的更多相关文章
- bzoj4001: [TJOI2015]概率论
题目链接 bzoj4001: [TJOI2015]概率论 题解 生成函数+求导 设\(g(n)\)表示有\(n\)个节点的二叉树的个数,\(g(0) = 1\) 设\(f(x)\)表示\(n\)个节点 ...
- BZOJ4001 TJOI2015概率论(生成函数+卡特兰数)
设f(n)为n个节点的二叉树个数,g(n)为n个节点的二叉树的叶子数量之和.则答案为g(n)/f(n). 显然f(n)为卡特兰数.有递推式f(n)=Σf(i)f(n-i-1) (i=0~n-1). 类 ...
- 2018.12.31 bzoj4001: [TJOI2015]概率论(生成函数)
传送门 生成函数好题. 题意简述:求nnn个点的树的叶子数期望值. 思路: 考虑fnf_nfn表示nnn个节点的树的数量. 所以有递推式f0=1,fn=∑i=0n−1fifn−1−i(n>0) ...
- 【bzoj4001】[TJOI2015]概率论 生成函数+导数
题目描述 输入 输入一个正整数N,代表有根树的结点数 输出 输出这棵树期望的叶子节点数.要求误差小于1e-9 样例输入 1 样例输出 1.000000000 题解 生成函数+导数 先考虑节点个数为$n ...
- BZOJ4001 [TJOI2015]概率论 【生成函数】
题目链接 BZOJ4001 题解 Miskcoo 太神了,orz #include<algorithm> #include<iostream> #include<cstr ...
- BZOJ4001[TJOI2015]概率论——卡特兰数
题目描述 输入 输入一个正整数N,代表有根树的结点数 输出 输出这棵树期望的叶子节点数.要求误差小于1e-9 样例输入 1 样例输出 1.000000000 提示 1<=N<=10^9 设 ...
- BZOJ4001:[TJOI2015]概率论(卡特兰数,概率期望)
Description Input 输入一个正整数N,代表有根树的结点数 Output 输出这棵树期望的叶子节点数.要求误差小于1e-9 Sample Input 1 Sample Output 1. ...
- 4001: [TJOI2015]概率论
4001: [TJOI2015]概率论 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 262 Solved: 108[Submit][Status] ...
- [TJOI2015]概率论
[TJOI2015]概率论 史上最短黑题 看起来一脸懵逼,没有取模,1e-9 根据期望定义,发现 分母是一个卡特兰数,,,,不能直接算 所以考虑怎么消掉一些东西 gn表示n个点的叶子个数和,fn表示n ...
随机推荐
- 六大设计原则(四)ISP接口隔离原则(上)
ISP的定义 首先明确接口定义 实例接口 我们在Java中,一个类用New关键字来创建一个实例.抛开Java语言我们其实也可以称为接口.假设Person zhangsan = new Person() ...
- PHP设计模式的六大设计原则
PHP设计模式的六大设计原则 1 简介 软件设计最大的难题就是应对需求的变化,但是纷繁复杂的需求变化却是不可预料的.此时,我们可以通过六大设计原则良好的应对未来的变化. 2 讲解 2.1 单一职责原则 ...
- Deepin MongoDB安装&使用总结
参考:手把手教你 MongoDB 的安装与详细使用(一) deepin 安装 mongodb 数据库(全面) 1. 导入公钥 sudo apt-key adv --keyserver hkp://ke ...
- String-StringBuffer-StringBuilder的区别和源码分析
一,String,StringBuffer,StringBuilder三者之间的关系 三个类的关系:StringBuffer和StringBuilder都继承自AbstractStringBuilde ...
- h5与c3权威指南笔记--css3新属性选择器
[att*=val] 选择所有att属性值中包含val的.只要包含val值,不论val值在属性值的前面还是中间还是后面~ <style> div[class*=div]{ color: r ...
- Nginx Windows详细安装部署教程
一.Nginx简介 Nginx (engine x) 是一个高性能的HTTP和反向代理服务器,也是一个IMAP/POP3/SMTP服务器.Nginx是由伊戈尔·赛索耶夫为俄罗斯访问量第二的Ramble ...
- Android View的重绘过程之Measure
博客首页:http://www.cnblogs.com/kezhuang/p/ View绘制的三部曲, 测量,布局,绘画今天我们分析测量过程 view的测量是从ViewRootImpl发起的,Vie ...
- JavaScript 节流函数 Throttle 详解
在浏览器 DOM 事件里面,有一些事件会随着用户的操作不间断触发.比如:重新调整浏览器窗口大小(resize),浏览器页面滚动(scroll),鼠标移动(mousemove).也就是说用户在触发这些浏 ...
- 为什么不能在 body 标签的前面的 script 标签中定义 JS 全局变量?
<!DOCTYPE html> <!-- 为什么不能在 body 标签的前面的 script 标签中定义 JS 全局变量? 在全局环境下的代码就是在页面加载阶段从上到下一边加载一边执 ...
- Aspnet mvc移除WebFormViewEngine
为了提高mvc的速度,在Global.asax中移除WebFormViewEngine protected void Application_Start() { RemoveWebFormEngine ...