●BZOJ 3143 [Hnoi2013]游走
题链:
http://www.lydsy.com/JudgeOnline/problem.php?id=3143
题解:
期望dp,高斯消元
首先有这样一种贪心分配边的编号的方案:(然后我没想到,233)
我们按每一条边的期望经过次数去分配编号,
具体来说,就是期望经过次数越多的边,分配的编号越小,反之则编号越大。
然后问题转化为如何求一条边的期望经过次数。(把求边的期望转化为求点的期望)
我们定义cnt[i]表示i点的出度,dp[i]表示期望经过i点的次数。
然后对于一个边(u,v),期望经过该边的次数为dp[u]/cnt[u]+dp[v]/cnt[v].
特别的:当u或者v为N号点时,对边的期望贡献为0,因为到了N点就结束了。
所以现在需要求出dp[i].
由全期望公式$$dp[i]=\sum_{j->i}dp[j]/cnt[j]$$
特别的:
1.j!=N,因为到达N点就已经结束游戏。
2.当i==1时,dp[i]还要多加一个数值1,因为初始是就期望直接经过了1次。
显然这个DP存在环,所以高斯消元解出dp值,然后再求出每一条边的期望经过次数,贪心地去编号即可。
注:高斯消元判断系数是否为0时,要用到eps,否则可能因为精度问题而出错。
代码:
#include<bits/stdc++.h>
#define MAXN 505
using namespace std;
const double eps=1e-7;
struct EDGE{
int u,v; double exp;
bool operator < (const EDGE &rtm) const{
return exp>rtm.exp;
}
}E[MAXN*MAXN];
double a[MAXN][MAXN],dp[MAXN],ans;
double *A[MAXN];
bool Edge[MAXN][MAXN];
int cnt[MAXN];
int N,M;
int dcmp(double x){
if(fabs(x)<=eps) return 0;
return x>0?1:-1;
}
void Gausselimination(int pos,int i){
if(pos==N+1||i==N+1) return;
for(int j=pos;j<=N;j++) if(dcmp(A[j][i])!=0){
swap(A[pos],A[j]); break;
}
if(dcmp(A[pos][i])!=0){
for(int j=pos+1;j<=N;j++){
double k=A[j][i]/A[pos][i];
for(int l=i;l<=N+1;l++)
A[j][l]-=A[pos][l]*k;
}
}
Gausselimination(pos+(dcmp(A[pos][i])!=0),i+1);
if(dcmp(A[pos][i])!=0){
for(int l=i+1;l<=N;l++)
dp[i]+=A[pos][l]*dp[l];
dp[i]=A[pos][N+1]-dp[i];
dp[i]=dp[i]/A[pos][i];
}
}
void buildequation(){
for(int i=1;i<=N;i++){
a[i][i]=-1;
if(i==1) a[i][N+1]=-1;
for(int j=1;j<N;j++){
if(!Edge[j][i]) continue;
a[i][j]=1.0/cnt[j];
}
}
for(int i=1;i<=N;i++) A[i]=a[i];
}
int main(){
scanf("%d%d",&N,&M);
for(int i=1,u,v;i<=M;i++){
scanf("%d%d",&u,&v);
E[i].u=u; E[i].v=v;
Edge[u][v]=Edge[v][u]=1;
cnt[u]++; cnt[v]++;
}
buildequation();
Gausselimination(1,1);
for(int i=1,u,v;i<=M;i++){
u=E[i].u; v=E[i].v;
E[i].exp=(u!=N?dp[u]/cnt[u]:0)+(v!=N?dp[v]/cnt[v]:0);
}
sort(E+1,E+M+1);
for(int i=1;i<=M;i++)
ans+=E[i].exp*i;
printf("%.3lf\n",ans);
return 0;
}
●BZOJ 3143 [Hnoi2013]游走的更多相关文章
- bzoj 3143: [Hnoi2013]游走 高斯消元
3143: [Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1026 Solved: 448[Submit][Status] ...
- bzoj 3143 [Hnoi2013]游走 期望dp+高斯消元
[Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3394 Solved: 1493[Submit][Status][Disc ...
- BZOJ 3143 HNOI2013 游走 高斯消元 期望
这道题是我第一次使用高斯消元解决期望类的问题,首发A了,感觉爽爽的.... 不过笔者在做完后发现了一些问题,在原文的后面进行了说明. 中文题目,就不翻大意了,直接给原题: 一个无向连通图,顶点从1编号 ...
- BZOJ 3143: [Hnoi2013]游走 [概率DP 高斯消元]
一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分 ...
- bzoj 3143: [Hnoi2013]游走
Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点, ...
- BZOJ 3143: [Hnoi2013]游走 概率与期望+高斯消元
Description 一个无向连通图,顶点从1编号到N,边从1编号到M.小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获 ...
- bzoj 3143 [Hnoi2013]游走(贪心,高斯消元,期望方程)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3143 [题意] 给定一个无向图,从1走到n,走过一条边得到的分数为边的标号,问一个边的 ...
- [BZOJ 3143][HNOI2013]游走(数学期望)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3143 分析: 易得如果知道了每条边经过的数学期望,那就可以贪心着按每条边的期望的大小赋 ...
- BZOJ.3143.[HNOI2013]游走(概率 期望 高斯消元)
题目链接 参考 远航之曲 把走每条边的概率乘上分配的标号就是它的期望,所以我们肯定是把大的编号分配给走的概率最低的边. 我们只要计算出经过所有点的概率,就可以得出经过一条边(\(u->v\))的 ...
随机推荐
- C语言二维数组作业
一.PTA实验作业 题目1:7-3 出生年 1. 本题PTA提交列表 2. 设计思路 1.声明一个函数different()用来计算一个年份的不同数字个数 2.定义y(y是来计算符合要求的年份的量), ...
- Android实验报告
实验名称:Android程序设计 实验时间:2017.5.24 实验人员:20162309邢天岳(结对同学20162313苑洪铭) 实验目的:使用android stuidio开发工具进行基本安卓软件 ...
- 前端面试题之css
1.请列出几个具有继承特性的css属性 font-family font-size color line-height text-align text-indent 2.阐述display: ...
- c# windows service 实现监控其他程序是否被关闭,关闭则报警
namespace MonitorService { public partial class MonitorSv : ServiceBase { string AppName = "&qu ...
- JAVA_SE基础——编码规范&代码编写规则
这次我来给大家说明下编码规范&代码编写规则 ↓ 编码规范可以帮助程序员在编程时注意一些细节问题,提高程序的可读性,让程序员能够尽快地理解新的代码,并帮助大家编写出规范的利于维护的Java代码 ...
- 剑指offer-两个链表的第一个公共节点
题目描述 输入两个链表,找出它们的第一个公共结点. 解题思路 分析可得如果两个链表有公共节点,那么公共节点出现在两个链表的尾部,即从某一节点开始,两链表之后的节点全部相等.可以首先遍历两个链表得出各自 ...
- angular路由守卫
路由守卫是指当用户满足了某些要求之后才可以离开或者进入某个页面或者场景的时候使用.比如说只有当用户填写了用户名和密码之后才可以进入首页,比如说用户离开某个页面时明月保存信息提示用户是否保存信息后再离 ...
- C# 使用 GDI+ 实现添加中心旋转(任意角度)的文字
这篇文章是 GDI+ 总结系列的第三篇,如果对 GDI+ 的基础使用不熟悉的朋友可以先看第一篇文章<C# 使用 GDI+ 画图>. 需求 需求是要实现给图片添加任意角度旋转的文字,文字的旋 ...
- SpringCloud的服务消费者 (一):(rest+ribbon)访问注册的微服务
采用Ribbon或Feign方式访问注册到EurekaServer中的微服务.1.Ribbon实现了客户端负载均衡,Feign底层调用Ribbon2.注册在EurekaServer中的微服务api,不 ...
- maven入门(1-4)使用eclipse构建maven项目
1. 安装m2eclipse插件 要用Eclipse构建Maven项目,我们需要先安装meeclipse插件 点击eclipse菜单栏Help->Eclipse Marketplac ...