来自FallDream的博客,未经允许,请勿转载,谢谢。


小N最近在研究NP完全问题,小O看小N研究得热火朝天,便给他出了一道这样的题目:
有n个球,用整数1到n编号。还有m个筐子,用整数1到m编号。
每个筐子最多能装3个球。
每个球只能放进特定的筐子中。具体有e个条件,第i个条件用两个整数vi和ui描述,表示编号为vi的球可以放进编号为ui的筐子中。
每个球都必须放进一个筐子中。如果一个筐子内有不超过1个球,那么我们称这样的筐子为半空的。
求半空的筐子最多有多少个,以及在最优方案中,每个球分别放在哪个筐子中。
小N看到题目后瞬间没了思路,站在旁边看热闹的小I嘿嘿一笑:“水题!”
然后三言两语道出了一个多项式算法。
小N瞬间就惊呆了,三秒钟后他回过神来一拍桌子:
“不对!这个问题显然是NP完全问题,你算法肯定有错!”
小I浅笑:“所以,等我领图灵奖吧!”
小O只会出题不会做题,所以找到了你——请你对这个问题进行探究,并写一个程序解决此题。
T<=5  n<=300 m<=100
 
考虑每个筐子拆成3个点,在被匹配走0/1/2/3个点的情况下能够产生的最大匹配和想要的贡献相同
只需要在其中两个点之间连一条边就好啦
然后带花树
其实我是想贴个模板
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#define MN 600
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int head[MN+],vis[MN+],cnt=,n,m,Q,q[MN*MN],now=,mark[MN+],match[MN+],ne[MN+],fa[MN+],top,tail;
struct edge{int to,ne;}e[MN*MN+];
inline int getfa(int x){return !fa[x]?x:fa[x]=getfa(fa[x]);}
inline void ins(int f,int t)
{
e[++cnt]=(edge){t,head[f]};head[f]=cnt;
e[++cnt]=(edge){f,head[t]};head[t]=cnt;
} int Lca(int x,int y)
{
++now;
for(;;swap(x,y))
if(x!=-)
{
x=getfa(x);
if(vis[x]==now) return x;
vis[x]=now;
if(match[x]) x=ne[match[x]];
else x=-;
}
} void Unit(int x,int y)
{
x=getfa(x);y=getfa(y);
if(x!=y) fa[x]=y;
} void group(int a,int p)
{
for(;a!=p;)
{
int b=match[a],c=ne[b];
if(getfa(c)!=p) ne[c]=b;
if(mark[b]==) mark[q[++top]=b]=;
if(mark[c]==) mark[q[++top]=c]=;
Unit(a,b);Unit(b,c);
a=c;
}
} void Solve(int x)
{
for(int i=;i<=n+*m;++i) ne[i]=fa[i]=mark[i]=vis[i]=;
mark[x]=;q[top=tail=]=x;
for(;!match[x]&&top>=tail;++tail)
{
int y=q[tail];
for(int i=head[y];i;i=e[i].ne)
{
int v=e[i].to;
if(match[y]==v||mark[v]==||getfa(y)==getfa(v)) continue;
if(mark[v]==)
{
int lca=Lca(y,v);
if(getfa(y)!=lca) ne[y]=v;
if(getfa(v)!=lca) ne[v]=y;
group(y,lca);
group(v,lca);
}
else if(!match[v])
{
ne[v]=y;
for(int u=v;u;)
{
int w=ne[u],ww=match[w];
match[w]=u,match[u]=w;
u=ww;
}
return;
}
else
{
ne[v]=y;
mark[q[++top]=match[v]]=;
mark[v]=;
}
}
}
} int main()
{
for(int T=read();T;--T)
{
memset(head,,sizeof(head));
memset(match,,sizeof(match));cnt=;
n=read();m=read();Q=read();
for(int i=;i<=Q;++i)
{
int x=read(),y=read();
ins(x,y+n);ins(x,y+n+m);ins(x,y+n+m+m);
}
for(int i=;i<=m;++i) ins(i+n,i+n+m);
for(int i=;i<=n+*m;++i)
if(!match[i]) Solve(i);
int ans=;
for(int i=;i<=n+*m;++i) if(match[i]) ++ans;
printf("%d\n",(ans>>)-n);
}
return ;
}
 
 

[bzoj4405][wc2016]挑战NPC的更多相关文章

  1. [WC2016]挑战NPC(一般图最大匹配)

    [WC2016]挑战NPC(一般图最大匹配) Luogu 题解时间 思路十分有趣. 考虑一个筐只有不多于一个球才有1的贡献代表什么. 很明显等效于有至少两个位置没有被匹配时有1的贡献. 进而可以构造如 ...

  2. [BZOJ]4405: [wc2016]挑战NPC(带花树)

    带花树模板 #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ...

  3. BZOJ 4405 [wc2016]挑战NPC 带花树 一般图最大匹配

    https://www.lydsy.com/JudgeOnline/problem.php?id=4405 这道题大概就是考场上想不出来,想出来也调不出来的题. 把每个桶拆成三个互相有边的点,每个球向 ...

  4. [WC2016]挑战NPC

    Sol 这做法我是想不到\(TAT\) 每个筐子拆成三个相互连边 球向三个筐子连边 然后跑一般图最大匹配 这三个筐子间最多有一个匹配 那么显然每个球一定会放在一个筐子里,一定有一个匹配 如果筐子间有匹 ...

  5. [UOJ171][WC2016]挑战NPC

    uoj luogu bzoj sol 你可以列一个表格. 一个框子里放球的数量 0 1 2 3 对"半空框子"数量的贡献 1 1 0 0 把一个框子拆三个点.两两之间连边. 会发现 ...

  6. bzoj 4405: [wc2016]挑战NPC【带花树】

    把每个筐子拆成3个,分别表示放0/1/2个,然后把这三个点两两连起来,每一个可以放在筐里的球都想这三个点连边. 这样可以发现,放0个球的时候,匹配数为1,放1个球的时候,匹配数为1,放2个球的时候,匹 ...

  7. 【BZOJ4405】【WC2016】挑战NPC(带花树)

    [BZOJ4405][WC2016]挑战NPC(带花树) 题面 BZOJ 洛谷 Uoj Description 小N最近在研究NP完全问题,小O看小N研究得热火朝天,便给他出了一道这样的题目: 有n个 ...

  8. 「WC2016」挑战NPC

    「WC2016」挑战NPC 解题思路 这个题建图非常厉害,带花树什么的只会口胡根本写不动,所以我写了机房某大佬教我的乱搞. 考虑把一个筐 \(x\) 拆成 \(x1,x2,x3\) 三个点,且这三个点 ...

  9. UOJ171 【WC2016】挑战NPC

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

随机推荐

  1. 【iOS】swift init构造器

    这几天在使用 Swift 重写原来的一个运动社交应用 SportJoin. 为什么要重写呢? 首先因为实在找不到设计师给我作图; 其次, 我也闲不下来, 想找一些项目做, 所以只好将原来的代码重写了. ...

  2. NYOJ 炫舞家st

    #include <iostream>#include <cstring>#include <algorithm>using namespace std; cons ...

  3. [Redis源码阅读]redis持久化

    作为web开发的一员,相信大家的面试经历里少不了会遇到这个问题:redis是怎么做持久化的? 不急着给出答案,先停下来思考一下,然后再看看下面的介绍.希望看了这边文章后,你能够回答这个问题. 为什么需 ...

  4. Python扩展模块——selenium的使用(定位、下载文件等)

    想全面的使用selenium可以下载<selenium 2自动化测试实战-基于Python语言>PDF的电子书看看 我使用到了简单的浏览器操作,下载文件等功能... 推荐使用firefox ...

  5. 你能选择出,前几个元素吗?使用纯css

    面试被问到 ,你能选择出前几个元素吗?括弧只能使用css 我当时是一脸懵逼... 回去的路上思考一路 终于想到了解决办法 虽然为时已晚 但是觉得很有意义... 首先要用到 否定选择器 : :not() ...

  6. 一种dubbo逻辑路由方案

    背景介绍 现在很多的公司都在用dubbo.springcloud做为服务化/微服务的开发框架,服务化之后应用越来越多,链路越来越长,服务环境的治理变的很困难.比如:研发团队的人很多的,同时有几个分支在 ...

  7. GIT入门笔记(10)- 多种撤销修改场景和对策

    场景1:当你改乱了工作区某个文件的内容,想直接丢弃工作区的修改时,用命令git checkout -- file. 场景2:当你不但改乱了工作区某个文件的内容,还添加到了暂存区时,想丢弃修改,分两步, ...

  8. fetch简明学习

    前面的话 Fetch API 提供了一个 JavaScript接口,用于访问和操纵HTTP管道的部分,例如请求和响应.它还提供了一个全局 fetch()方法,该方法提供了一种简单,合乎逻辑的方式来跨网 ...

  9. Python入门之函数的介绍/定义/定义类型/函数调用/Return

    本篇目录: 一. 函数的介绍 二. 函数的定义 三. 定义函数的三种类型 四. 函数调用的阶段 五. Return返回值 ======================================= ...

  10. tensorflow让程序学习到函数y = ax + b中a和b的值

    今天我们通过tensorflow来实现一个简单的小例子: 假如我定义一个一元一次函数y = 0.1x + 0.3,然后我在程序中定义两个变量 Weight 和 biases 怎么让我的这两个变量自己学 ...