生成对抗网络(Generative Adversarial Networks,GANs),由2014年还在蒙特利尔读博士的Ian Goodfellow引入深度学习领域。2016年,GANs热潮席卷AI领域顶级会议,从ICLR到NIPS,大量高质量论文被发表和探讨。Yann LeCun曾评价GANs是“20年来机器学习领域最酷的想法”。

Generative Adversarial Nets(GAN)

Generative Adversarial Networks论文提出了一种通过对抗过程来评估生成模型。其训练两个模型:仿照原始数据分布生成数据的模型G和评估数据来源(原始数据/生成数据)的模型D。训练G的目标是最大化D犯错的概率,训练D的目标是最大化区分真实训练样本与G生成的样本的能力。

如果能够知道训练样本的分布\(p(x)\),那么就可以在分布中随机采样得到新样本,大部分的生成式模型都采用这种思路,GAN则是在学习从随机变量z到训练样本x的映射关系,其中随机变量可以选择服从正太分布,那么就能得到一个由多层感知机组成的生成网络\(G(z;\theta_g)\),网络的输入是一个一维的随机变量,输出是一张图片。

GAN的优化是一个极小极大博弈问题,公式如下:
\[
\underset{G}{\min} \: \underset{D}{\max}V(D,G) =\mathbb E_{x\sim p_{data}(x)}[logD(x)]+\mathbb E_{z\sim p_{z}(z)}[log(1-D(G(z)))]
\]
优化这个函数,使\(p_z(x)\)接近\(p_{data}\).下面首先去掉期望符号:
\[
\begin{align}
V(G,D)&=\int_x p_{data}(x)\log(D(x))dx+\int_zp_z(z)\log(1-D(g(z)))dz \\
&=\int_x [p_{data}(x)\log(D(x))+p_g(x)\log(1-D(x))]dx
\end{align}
\]
先固定G,求\(\underset{D}{\max}V(D,G)\),令其导数等于0,求得D的最优解
\[
D^*_G(x)={p_{data}(x)\over p_{data}(x)+p_g(x)}
\]
现在固定D,优化G:将\(D^*_G\)带入目标函数。
\[
\begin{align}
\underset{G}\min V(G,D^*_G) &= \int_x [p_{data}(x)\log{p_{data}(x)\over p_{data}(x)+p_g(x)}+p_g(x)\log{p_g(x)\over p_{data}(x)+p_g(x)}]dx \\
&= \mathbb E_{x\sim p_{data}}[\log{p_{data}(x)\over p_{data}(x)+p_g(x)}]+\mathbb E_{x\sim p_g}[\log{p_g(x)\over p_{data}(x)+p_g(x)}] \\
&= -\log 4+KL(p_{data}\|{p_{data}+p_g\over 2})+KL(p_g\|{p_{data}+p_g\over 2}) \\
&= -\log 4+2JS(p_{data}\|p_g)
\end{align}
\]
其中KL散度:\(KL(P\|Q)=\mathbb E_{x\sim P}\log{P\over Q}=\int_xP(x)\log{P(x)\over Q(x)}dx\)

JS散度:\(JS(P\|Q)={1\over 2}KL(P\|{P+Q\over 2})+{1\over 2}KL(Q\|{P+Q\over 2})\)

JS散度具有对称性,而KL没有。

只要P和Q没有一点重叠或者重叠部分可忽略,JS散度就固定是常数,而这对于梯度下降方法意味着——梯度为0!此时对于最优判别器来说,生成器得不到梯度信息;即使对于接近最优的判别器来说,生成器也有很大机会面临梯度消失的问题。

参考 WGAN的介绍

f-GAN

在GAN中可以使用任意的f-divergency,相关论文f-GAN(Sebastian Nowozin, Botond Cseke, Ryota Tomioka, “f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization”, NIPS, 2016)

f-divergence

P和Q是两个分布,p(x),q(x)是x的分布概率
\[
D_f(P||Q)=\int_x q(x)f({p(x)\over q(x)})dx
\]
其中f是凸函数且f(1)=0,\(D_f(P||Q)\)衡量了P和Q之间的距离.

当\(\forall x,p(x)=q(x)\)时,\(D_f(P||Q)\)具有最小值0.

当\(f(x)=x\log x\)时,\(D_f(P||Q)=\int_xp(x)\log({p(x)\over q(x)})\),即KL divergence.

当\(f(x)=-\log x\)时,\(D_f(P||Q)=\int_xq(x)\log({q(x)\over p(x)})\),即reverse KL divergence.

当\(f(x)=(x-1)^2\)时,\(D_f(P||Q)=\int_x{(p(x)-q(x))^2\over q(x)}dx\)为Chi Square divergence.

Fenchel Conjugate

每个凸函数f都有一个与之相对的conjugate function f*:

\(f^* (t)=\max_{x\in dom(f)}\{xt-f(x)\}\),且(f ) = f.

\(f(x)=\max_{t\in dom(f^*)}\{xt-f^*(t)\}\),带入\(D_f(P||Q)\)得:
\[
\begin{align}
D_f(P||Q) &=\int_x q(x)f({p(x)\over q(x)})dx \\
&=\int_xq(x)(\max_{t\in dom(f^*)}\{{p(x)\over q(x)}t-f^*(t)\})dx \\
&=\max_D\int_x p(x)D(x)dx-\int_x q(x)f^*(D(x))dx \\
&\text{(t=D(x))}
\end{align}
\]
因此GAN中
\[
D_f(P_{data}\|P_G)=\max_D\{E_{x\sim P_{data}}[D(x)]-E_{x\sim P_G}[f^*(D(x))]\}
\]
可以使用任何的f-divergence,如JS,Jeffrey,Pearson.

WGAN

原始版本:weight clipping,改进版本:gradient penalty.

论文:

  • Martin Arjovsky, Soumith Chintala, Léon Bottou, Wasserstein GAN, arXiv preprint, 2017
  • Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, Aaron Courville,“Improved Training of Wasserstein GANs”, arXiv preprint, 2017

主要思想:使用Earth Mover's Distance(Wasserstein Distance)来评估两个分布之间的距离.推土机距离表示将一个分布搬运变为另一个分布的最小搬运的量.

之前GAN所采用的JS divergence的缺点是当两个分布没有交集时,距离是0,梯度为0,网络很难学习.Earth Mover's Distance便可以解决这个问题.此时网络能够持续学习,但为了防止梯度爆炸,需要weight clipping等手段.

对抗样本(adversarial examples)

14年的时候Szegedy在研究神经网络的性质时,发现针对一个已经训练好的分类模型,将训练集中样本做一些细微的改变会导致模型给出一个错误的分类结果,这种虽然发生扰动但是人眼可能识别不出来,并且会导致误分类的样本被称为对抗样本,他们利用这样的样本发明了对抗训练(adversarial training),模型既训练正常的样本也训练这种自己造的对抗样本,从而改进模型的泛化能力[1]。如下图所示,在未加扰动之前,模型认为输入图片有57.7%的概率为熊猫,但是加了之后,人眼看着好像没有发生改变,但是模型却认为有99.3%的可能是长臂猿。

对抗样本跟生成式对抗网络没有直接的关系,对抗网络是想学样本的内在表达从而能够生成新的样本,但是有对抗样本的存在在一定程度上说明了模型并没有学习到数据的一些内部表达或者分布,而可能是学习到一些特定的模式足够完成分类或者回归的目标而已。

GAN生成的图片能否用于CNN训练?

现在来说,应当不可以。由于GAN是从较小的分布中采样生成的,是真实世界的极小的一部分,所以拿来训练没有广泛的适用性。另外,当前的GAN生成较大的图片比较困难(32x32以上)。

参考资料

生成式模型之 GAN的更多相关文章

  1. 生成式对抗网络(GAN)实战——书法字体生成练习赛

    https://www.tinymind.cn/competitions/ai 生成式对抗网络(GAN)是近年来大热的深度学习模型. 目前GAN最常使用的场景就是图像生成,作为一种优秀的生成式模型,G ...

  2. 生成式对抗网络GAN 的研究进展与展望

    生成式对抗网络GAN的研究进展与展望.pdf 摘要: 生成式对抗网络GAN (Generative adversarial networks) 目前已经成为人工智能学界一个热门的研究方向. GAN的基 ...

  3. 预测学习、深度生成式模型、DcGAN、应用案例、相关paper

    我对GAN"生成对抗网络"(Generative Adversarial Networks)的看法: 前几天在公开课听了新加坡国立大学[机器学习与视觉实验室]负责人冯佳时博士在[硬 ...

  4. 【神经网络与深度学习】生成式对抗网络GAN研究进展(五)——Deep Convolutional Generative Adversarial Nerworks,DCGAN

    [前言]      本文首先介绍生成式模型,然后着重梳理生成式模型(Generative Models)中生成对抗网络(Generative Adversarial Network)的研究与发展.作者 ...

  5. 机器学习 —— 基础整理(三)生成式模型的非参数方法: Parzen窗估计、k近邻估计;k近邻分类器

    本文简述了以下内容: (一)生成式模型的非参数方法 (二)Parzen窗估计 (三)k近邻估计 (四)k近邻分类器(k-nearest neighbor,kNN) (一)非参数方法(Non-param ...

  6. AI 判别式模型和生成式模型

    判别式模型(discriminative model) 生成式模型(generative model) 对于输入x,类别标签y:产生式模型估计它们的联合概率分布P(x,y)判别式模型估计条件概率分布P ...

  7. 生成式模型 VS 判别式模型

    1 定义 1.1 生成式模型 生成式模型(Generative Model)会对x和y的联合分布p(x,y)建模,然后通过贝叶斯公式来求得 p(yi|x),然后选取使得p(yi|x) 最大的 yi,即 ...

  8. 判别式模型 vs. 生成式模型

    1. 简介 生成式模型(generative model)会对\(x\)和\(y\)的联合分布\(p(x,y)\)进行建模,然后通过贝叶斯公式来求得\(p(y|x)\), 最后选取使得\(p(y|x) ...

  9. 产生式模型(生成式模型)与判别式模型<转载>

    转自http://dongzipnf.blog.sohu.com/189983746.html 产生式模型与判别式模型 产生式模型(Generative Model)与判别式模型(Discrimiti ...

随机推荐

  1. 在SpringBoot中存放session到Redis

    前言 今天你们将再一次领略到SpringBoot的开发到底有多快,以及SpringBoot的思想(默认配置) 我们将使用redis存放用户的session,用户session存放策略有很多,有存放到内 ...

  2. [Note] Stream Computing

    Stream Computing 概念对比 静态数据和流数据 静态数据,例如数据仓库中存放的大量历史数据,特点是不会发生更新,可以利用数据挖掘技术和 OLAP(On-Line Analytical P ...

  3. Kaggle新手入门之路

    学完了Coursera上Andrew Ng的Machine Learning后,迫不及待地想去参加一场Kaggle的比赛,却发现从理论到实践的转变实在是太困难了,在此记录学习过程. 一:安装Anaco ...

  4. yaf代码生成工具的使用

    具体步骤如下: 1.下载php-yaf源码: git clone https://github.com/laruence/php-yaf/ 2.运行代码生成工具: /Users/helloxiaozh ...

  5. Java获取当前的时间

    Java获取当前的时间 1.利用Java中的Calendar获取当前的时间 具体实现如下: /** * @Title:NowTime.java * @Package:com.you.model * @ ...

  6. Android 开发环境搭建与Hello World

    Hello World 到这里, 环境搭建就没问题了. 接下来, 创建一个Android 的Hello World. 1.  添加一个安卓虚拟设备 直接点击虚拟设备管理图标或是  Window--&g ...

  7. ASP.NET 页面双向静态化

    而我们预期的结果应该如下图,实际只请求两次. 用301重定向可以解决该循环请求产生的问题. OK, let's begin. 本文的Demo和Source是基于上一篇的,如果下面的一些文件或文件夹没有 ...

  8. web开发性能优化---SEO优化篇

    一.清理垃圾代码 清理垃圾代码是指删除页面中的冗余代码,可以删除80%的冗余代码. 垃圾代码主要指那些删除了也不会对页面有任何影响的非必要代码. 最常见的垃圾代码,空格 空格字符是网页中最常见的垃圾代 ...

  9. How to verify Certificate Pinning?

    Some friends of mine they worry about the risk of Man-in-the-middle so they ask me how to verify the ...

  10. JVM 调优系列之图解垃圾回收

    摘要: jvm必知系列,总结一些常见jvm回收机制,方便查阅 对于调优之前,我们必须要了解其运行原理,java 的垃圾收集Garbage Collection 通常被称为"GC", ...